19 references, page 1 of 2

[1] E. S. Loomi, The Pythagorean Proposition, NCTM, (1968).

[2] A. Bogomolny, Pythagorean theorem and its many proofs from Interactive Mathematics Miscellany and Puzzles, https://www.cut-the-knot.org/pythagoras/index.shtml.

[3] M. D. Hirschhorn, Pythagoras' theorem, The Math. Gazette 92, (2008), 565.

[4] N. Luzia, A proof of the Pythagorean theorem after Descartes, Amer. Math. Month. 123, (2016), 386.

[5] J. Zimba, On the possibility of trigonometric proofs of the pythagorean theorem, Forum Geometricorum 9, (2009), 275{278.

[6] Z. Lengvarszky, Pythagoras by integral, Amer. Math. Month. 122, (2015), 792.

[7] G. Lanzo, Note on the binomial theorem, The Analyst, 1, (1874), 177{178.

[8] J. L. Coolidge, The story of the binomial theorem, Amer. Math. Month. 56, (1949), 147{157.

[9] C. M. Fulton, A simple proof of the binomial theorem, Amer. Math. Month. 59, (1952), 243{244.

[10] L. Euler, Introductio in analysin in nitorum, Bosquet, Lausanne, 1748. English translation by John Blanton, Springer, New York, 1988 and 1990.

[11] S. Lefschetz, A direct proof of de Moivre's formula, Amer. Math. Month. 23, (1916), 366{368.

[12] L. M. Weiner, A direct proof of the binomial theorem, Math. Teacher 48, (1955), 412.

[13] A. Rosalsky, A simple and probabilistic proof of the binomial theorem, Amer. Statist., 61, (2007), 161{162. [OpenAIRE]

[14] L. C. Hwang, A simple proof of the binomial theorem using di erential calculus, Amer. Statist., 63, (2009), 43{44.

[15] J. Singh, Another proof of the binomial theorem, Amer. Math. Month. 124, (2017), 658.

19 references, page 1 of 2