Min-Max decoding for non binary LDPC codes

Preprint English OPEN
Savin, Valentin;
(2008)
  • Subject: Computer Science - Information Theory
    arxiv: Computer Science::Information Theory

Iterative decoding of non-binary LDPC codes is currently performed using either the Sum-Product or the Min-Sum algorithms or slightly different versions of them. In this paper, several low-complexity quasi-optimal iterative algorithms are proposed for decoding non-binar... View more
  • References (9)

    [1] R. G. Gallager, Low Density Parity Check Codes, Ph.D. thesis, MIT, Cambridge, Mass., September 1960.

    [2] R. G. Gallager, Low Density Parity Check Codes, M.I.T. Press, 1963, Monograph.

    [3] N. Wiberg, Codes and decoding on general graphs, Ph.D. thesis, Likoping University, 1996, Sweden.

    [4] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q ),” in Information Theory Workshop, 2003. Proceedings. 2003 IEEE, 2003, pp. 70-73.

    [5] D. Declercq and M. Fossorier, “Extended min-sum algorithm for decoding LDPC codes over GF(q),” in Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, 2005, pp. 464-468.

    [6] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over GF(q),” Communications, IEEE Transactions on, vol. 55, pp. 633-643, 2007.

    [7] MC Davey and DJC MacKay, “Low density parity check codes over GF(q),” Information Theory Workshop, 1998, pp. 70-71, 1998.

    [8] X.Y. Hu and E. Eleftheriou, “Cycle Tanner-graph codes over GF(2b),” Information Theory, 2003. Proceedings. IEEE International Symposium on.

    [9] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” Communications, 2004 IEEE International Conference on, vol. 2, 2004.

  • Metrics
Share - Bookmark