publication . Preprint . Article . 2003

Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift

Eric Bedford; Jeffrey Diller;
Open Access English
  • Published: 18 Jun 2003
Abstract
Comment: 45 pages, 12 figures
Subjects
free text keywords: Mathematics - Dynamical Systems, Mathematics - Complex Variables, 37D99, 37F99, General Mathematics, Golden ratio, Mean estimation, Topology, Intersection theory, medicine.medical_specialty, medicine, Dynamical system, Complex dynamics, Mathematical analysis, Dynamical systems theory, Mathematics
26 references, page 1 of 2

[Ab1] N. Abarenkova, J.-Ch. Angl`es d'Auriac, S. Boukraa, S. Hassani and J.-M. Maillard, Rational dynamical zeta functions for birational transformations, Physica A 264 (1999) 264-293. [OpenAIRE]

[Ab2] N. Abarenkova, J.-Ch. Angl`es d'Auriac, S. Boukraa, S. Hassani and J.-M. Maillard, Topological entropy and complexity for discrete dynamical systems, Phys. Lett. A 262 (1999) 44-49.

[Ab3] N. Abarenkova, J.-Ch. Angl`es d'Auriac, S. Boukraa, S. Hassani and J.-M. Maillard, Growth complexity spectrum of some discrete dynamical systems, Physica D 130 (1999) 27-42. [OpenAIRE]

[Ab4] N. Abarenkova, J.-Ch. Angl`es d'Auriac, S. Boukraa and J.-M. Maillard, Real Arnold complexity versus real topological entropy for birational transformations, J. Phys. A. 33 (2000), 1465-1501. [OpenAIRE]

[Ab5] N. Abarenkova, J.-Ch. Angl`es d'Auriac, S. Boukraa and J.-M. Maillard, Real topological entropy versus metric entropy for birational measurepreserving transformations, Physica D 144 (2000) 387-433. [OpenAIRE]

[Ak] E. Akin, The General Topology of Dynamical Systems, AMS, 1993.

[BLS] E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms of C2, IV. The measure of maximal entropy and laminar currents. Invent. Math., 112 (1993), 77-125.

[BS1] E. Bedford and J. Smillie, Real polynomial diffeomorphisms with maximal entropy: Tangencies. http://arXiv.org/math.DS/0103038 [BS2] E. Bedford and J. Smillie, Real polynomial diffeomorphisms with maximal entropy: II. Small Jacobian.

[BTR] M. Bernardo, T.T. Truong and G. Rollet, The discrete Painlev´e I equations: transcendental integrability and asymptotic solutions, J. Phys. A: Math. Gen. 34 (2001), 3215-3252. [OpenAIRE]

[BM] S. Boukraa and J.-M. Maillard, Factorization properties of birational mappings, Physica A 220 (1995), 403-470.

[dCH] A. de Carvalho and T. Hall, How to prune a horseshoe, Nonlinearity, 15 (2002), no. 3, R19-R68.

[DN] R. Devaney and Z. Nitecki, Shift automorphisms in the H´enon family, Comm. Math. Phys. 67 (1979), 137-146. [OpenAIRE]

[DF] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123 (2001), 1135-1169.

[Du] R. Dujardin, Dynamique d'applications non polynomiales et courants laminaires, Doctoral Thesis, Univ. de Paris Sud, Orsay, 2002.

[Fr] S. Friedland, Entropy of rational self-maps of projective varieties. In Dynamical Systems and Related Topics (Nagoya, 1990), pages 128-140. World Sci. Publishing, River Edge, NJ, 1991.

26 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2003

Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift

Eric Bedford; Jeffrey Diller;