publication . Preprint . 2018

Circadian rhythm of dune-field activity

Gunn, Andrew; Wanker, Matt; Lancaster, Nicholas; Edmonds, Douglas A.; Ewing, Ryan C.; Jerolmack, Douglas J.;
Open Access English
  • Published: 09 Dec 2018
Abstract
Wind-blown sand dunes are both a consequence and a driver of climate dynamics; they arise under persistently dry and windy conditions, and are sometimes a source for airborne dust. Dune fields experience extreme daily changes in temperature, yet the role of atmospheric stability in driving sand transport and dust emission has not been established. Here we report on an unprecedented multi-scale field experiment at the White Sands Dune Field (New Mexico, USA), where we demonstrate that a daily rhythm of sand and dust transport arises from non-equilibrium atmospheric boundary layer convection. A global analysis of 45 dune fields confirms the connection between surf...
Subjects
free text keywords: Physics - Geophysics, Physics - Atmospheric and Oceanic Physics
Download from
34 references, page 1 of 3

[1] Hayes, A. G. Dunes across the solar system. Science 360(6392), 960- 961 (2018).

[2] Lapotre, M. G. A. et al. Large wind ripples on Mars: A record of atmospheric evolution. Science 352(6294), 55-58 (2016).

[3] Andreotti, B., Fourrire, A., Ould-Kaddour, F., Murray, B., & Claudin, P. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457, 1120-1123 (2009). [OpenAIRE]

[4] Jerolmack, D.J. et al. Internal boundary layer model for the evolution of desert dune fields. Nature Geosci. 5, 206-209 (2012). [OpenAIRE]

[5] Kok, J. F., Parteli, E. J., Michaels, T. I., & Karam, D. B. The physics of wind-blown sand and dust. R. Prog. Phys. 75(10), 106901 (2012).

[6] Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616-619 (2008).

[7] Perez, L. et al. Coarse particles from Saharan dust and daily mortality. Epidem. 19(6), 800-807 (2008).

[8] Lancaster, J., Lancaster, N., & Seely, M. K. Climate of the central Namib Desert. Madoqua 14, 5-61 (1984).

[9] Sterk, G., Jacobs, A. F. G., & Van Boxel, J. H. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surf. Process. Landforms 23, 877-887 (1998). [OpenAIRE]

[10] Martin, R. L., & Kok, J. F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Science Adv. 3(6), e1602569 (2017).

[11] Dupont, S. et al. Aerodynamic parameters over an eroding bare surface: reconciliation of the law of the wall and eddy covariance determinations. J. Geophys, Res. 123(9), 4490-4508 (2018).

[12] Evan, A. T., Flamant, C., Gaetani, M., & Guichard, F. The past, present and future of African dust. Nature 531, 493-495 (2016). [OpenAIRE]

[13] Zender, C. S., Bian, H., & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 108(D14), 4416 (2003). [OpenAIRE]

[14] Garratt, J. R. The atmospheric boundary layer. Earth-Sci. Rev. 37, 89-134 (1994). [OpenAIRE]

[15] Monin, A. S., & Obukhov, A. M. F. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24, 163-187 (1954).

34 references, page 1 of 3
Abstract
Wind-blown sand dunes are both a consequence and a driver of climate dynamics; they arise under persistently dry and windy conditions, and are sometimes a source for airborne dust. Dune fields experience extreme daily changes in temperature, yet the role of atmospheric stability in driving sand transport and dust emission has not been established. Here we report on an unprecedented multi-scale field experiment at the White Sands Dune Field (New Mexico, USA), where we demonstrate that a daily rhythm of sand and dust transport arises from non-equilibrium atmospheric boundary layer convection. A global analysis of 45 dune fields confirms the connection between surf...
Subjects
free text keywords: Physics - Geophysics, Physics - Atmospheric and Oceanic Physics
Download from
34 references, page 1 of 3

[1] Hayes, A. G. Dunes across the solar system. Science 360(6392), 960- 961 (2018).

[2] Lapotre, M. G. A. et al. Large wind ripples on Mars: A record of atmospheric evolution. Science 352(6294), 55-58 (2016).

[3] Andreotti, B., Fourrire, A., Ould-Kaddour, F., Murray, B., & Claudin, P. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457, 1120-1123 (2009). [OpenAIRE]

[4] Jerolmack, D.J. et al. Internal boundary layer model for the evolution of desert dune fields. Nature Geosci. 5, 206-209 (2012). [OpenAIRE]

[5] Kok, J. F., Parteli, E. J., Michaels, T. I., & Karam, D. B. The physics of wind-blown sand and dust. R. Prog. Phys. 75(10), 106901 (2012).

[6] Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616-619 (2008).

[7] Perez, L. et al. Coarse particles from Saharan dust and daily mortality. Epidem. 19(6), 800-807 (2008).

[8] Lancaster, J., Lancaster, N., & Seely, M. K. Climate of the central Namib Desert. Madoqua 14, 5-61 (1984).

[9] Sterk, G., Jacobs, A. F. G., & Van Boxel, J. H. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surf. Process. Landforms 23, 877-887 (1998). [OpenAIRE]

[10] Martin, R. L., & Kok, J. F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Science Adv. 3(6), e1602569 (2017).

[11] Dupont, S. et al. Aerodynamic parameters over an eroding bare surface: reconciliation of the law of the wall and eddy covariance determinations. J. Geophys, Res. 123(9), 4490-4508 (2018).

[12] Evan, A. T., Flamant, C., Gaetani, M., & Guichard, F. The past, present and future of African dust. Nature 531, 493-495 (2016). [OpenAIRE]

[13] Zender, C. S., Bian, H., & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 108(D14), 4416 (2003). [OpenAIRE]

[14] Garratt, J. R. The atmospheric boundary layer. Earth-Sci. Rev. 37, 89-134 (1994). [OpenAIRE]

[15] Monin, A. S., & Obukhov, A. M. F. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24, 163-187 (1954).

34 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue