Tangent: Automatic Differentiation Using Source Code Transformation in Python

Preprint English OPEN
van Merriënboer, Bart; Wiltschko, Alexander B.; Moldovan, Dan;
(2017)
  • Subject: Statistics - Machine Learning | Computer Science - Mathematical Software
    arxiv: Computer Science::Mathematical Software

Automatic differentiation (AD) is an essential primitive for machine learning programming systems. Tangent is a new library that performs AD using source code transformation (SCT) in Python. It takes numeric functions written in a syntactic subset of Python and NumPy as... View more
  • References (8)

    [1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

    [2] C. H. Bischof and H. M. Bücker. Computing derivatives of computer programs. In J. Grotendorst, editor, Modern Methods and Algorithms of Quantum Chemistry: Proceedings, Second Edition, volume 3 of NIC Series, pages 315-327. NIC-Directors, Jülich, 2000.

    [3] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.

    [4] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, et al. Theano: A python framework for fast computation of mathematical expressions. arXiv preprint, 2016.

    [5] Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural computation, 2(4):490-501, 1990.

    [6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

    [7] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP '86, pages 151-161, New York, NY, USA, 1986. ACM.

    [8] Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework: Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst., 30(2):7:1-7:36, March 2008.

  • Related Research Results (2)
  • Metrics
Share - Bookmark