Charges and Energy in Chern-Simons Theories and Lovelock Gravity

Preprint English OPEN
Allemandi, G. ; Francaviglia, M. ; Raiteri, M. (2003)

Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical complexity of the Lovelock Lagrangian we obtain a remarkably simple expression for the variation of the charges ensuing from the diffeomorphism covariance of the theory. The viability of the result is tested in specific applications and the formal expression for the entropy of Lovelock black holes is recovered.
  • References (51)
    51 references, page 1 of 6

    [1] A.Achucarro, P.K.Townsend, Phys.Lett. B 180 (1986), 89.

    [2] G. Allemandi, M. Francaviglia, M. Raiteri: Class. Quant. Grav. 19 (2002), 2633-2655 (gr-qc/0110104).

    [3] G. Allemandi, M. Francaviglia, M. Raiteri: Class. Quant. Grav. 20 (2003), 483-506 (gr-qc/0211098).

    [4] S.C.Anco, R.S.Tung, J. Math. Phys 43 (2002), 3984; S.C.Anco, R.S.Tung, J. Math. Phys 43 (2002), 5531.

    [5] M. Ban˜ados, C. Teitelboim, J. Zanelli: Phys. Rev. Lett. 69 (1992), 1849- 1851 (hep-th/9204099); M. Ban˜ados, M. Henneaux, C. Teitelboim, J. Zanelli: Phys. Rev. D 48 (1993), 1506-1525 (gr-qc/9302012).

    [6] M. Ban˜ados, C. Teitelboim, J. Zanelli: Phys. Rev. D 49 (2) (1994), 975-986 (gr-qc/9307033).

    [7] M. Ban˜ados: Phys. Rev. D 65 (2002), (hep-th/0109031); M. Ban˜ados: Nucl. Phys. Proc. Suppl. 88 (2000), 17-26 (hep-th/9911150).

    [8] G. Barnich, F. Brandt, Nucl.Phys. B633 (2002) 3 (hep-th/0111246).

    [9] N.D. Birrel, P. C. W. Davies: Quantum fields in curved space, Cambridge University Press (1982).

    [10] I. Booth: PhD Thesis from University of Waterloo (gr-qc/0008030); I. Booth, R.B. Mann: Phys. Rev. D 59, 064021 (gr-qc/9810009); I. Booth, R.B. Mann: Phys. Rev. D 124009 (1999) (gr-qc/9907072).

  • Metrics
    No metrics available
Share - Bookmark