On Fourier re-expansions

Preprint English OPEN
Liflyand, E. (2012)
  • Subject: Mathematics - Classical Analysis and ODEs | Primary 42A38, Secondary 42A50

We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the F... View more
  • References (18)
    18 references, page 1 of 2

    [1] D. Borwein, Linear functionals connected with strong Cesa´ro summability, J. London Math. Soc. 40 (1965), 628-634.

    [2] E.M. Dyn'kin, Methods of the Theory of Singular Integrals: Hilbert Transform and Caldero´n-Zygmund Theory, Commutative Harmonic Analysis I (V.P. Khavin and N.K. Nikol'skij - eds.), Springer, 1991, 167-259.

    [3] G.A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (Russian). - English transl.: Math. Notes 23 (1978), 117-123.

    [4] D.V. Giang and F. Mo´ricz, Lebesgue integrability of double Fourier transforms, Acta Sci. Math. (Szeged) 58(1993), 299-328.

    [5] S.I. Izumi and T. Tsuchikura, Absolute convergence of trigonometric expansions, Tˆohoku Math. J. 7 (1955), 243-251.

    [6] J.-P. Kahane, S´eries de Fourier absolument convergentes, Springer, Berlin, 1970.

    [7] F.W. King, Hilbert transforms, Vol.1, Enc. Math/ Appl., Cambridge Univ. Press, Cambridge, 2009.

    [8] H. Kober, A note on Hilberts operator, Bull. Amer. Math. Soc., 48:1 (1942), 421-426.

    [9] E. Liflyand, Fourier transform of functions from certain classes, Anal. Math. 19(1993), 151-168.

    [10] E. Liflyand and S. Tikhonov, Weighted Paley-Wiener theorem on the Hilbert transform, C.R. Acad. Sci. Paris, Ser.I 348 (2010), 1253-1258.

  • Metrics
    No metrics available
Share - Bookmark