On Fourier re-expansions

Preprint English OPEN
Liflyand, E. (2012)
  • Subject: Mathematics - Classical Analysis and ODEs | Primary 42A38, Secondary 42A50

We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.
  • References (18)
    18 references, page 1 of 2

    [1] D. Borwein, Linear functionals connected with strong Cesa´ro summability, J. London Math. Soc. 40 (1965), 628-634.

    [2] E.M. Dyn'kin, Methods of the Theory of Singular Integrals: Hilbert Transform and Caldero´n-Zygmund Theory, Commutative Harmonic Analysis I (V.P. Khavin and N.K. Nikol'skij - eds.), Springer, 1991, 167-259.

    [3] G.A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (Russian). - English transl.: Math. Notes 23 (1978), 117-123.

    [4] D.V. Giang and F. Mo´ricz, Lebesgue integrability of double Fourier transforms, Acta Sci. Math. (Szeged) 58(1993), 299-328.

    [5] S.I. Izumi and T. Tsuchikura, Absolute convergence of trigonometric expansions, Tˆohoku Math. J. 7 (1955), 243-251.

    [6] J.-P. Kahane, S´eries de Fourier absolument convergentes, Springer, Berlin, 1970.

    [7] F.W. King, Hilbert transforms, Vol.1, Enc. Math/ Appl., Cambridge Univ. Press, Cambridge, 2009.

    [8] H. Kober, A note on Hilberts operator, Bull. Amer. Math. Soc., 48:1 (1942), 421-426.

    [9] E. Liflyand, Fourier transform of functions from certain classes, Anal. Math. 19(1993), 151-168.

    [10] E. Liflyand and S. Tikhonov, Weighted Paley-Wiener theorem on the Hilbert transform, C.R. Acad. Sci. Paris, Ser.I 348 (2010), 1253-1258.

  • Metrics
    No metrics available
Share - Bookmark