Characterizing locally distinguishable orthogonal product states

Preprint English OPEN
Feng, Yuan ; Shi, Yaoyun (2007)
  • Subject: Quantum Physics
    arxiv: Mathematics::Operator Algebras

Bennett et al. \cite{BDF+99} identified a set of orthogonal {\em product} states in the $3\otimes 3$ Hilbert space such that reliably distinguishing those states requires non-local quantum operations. While more examples have been found for this counter-intuitive ``nonlocality without entanglement'' phenomenon, a complete and computationally verifiable characterization for all such sets of states remains unknown. In this Letter, we give such a characterization for the $3\otimes 3$ space.
  • References (23)
    23 references, page 1 of 3

    † Electronic address: shiyy@eecs.umich.edu [1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,

    777 (1935). [2] J. S. Bell, Physics 1(3), 195 (1964). [3] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor,

    Phys. Rev. A 59, 1070 (1999). [4] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J.

    A. Smolin, and B.M. Terhal, Phys. Rev. Lett. 82, 5385

    (1999). [5] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and

    B. M. Terhal, Comm. Math. Phys. 238, 379 (2003). [6] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Phys.

    Rev. Lett. 87, 277902 (2001); S. Ghosh, G. Kar, A. Roy,

    D. Sarkar, A. Sen(De), and U. Sen, Phys. Rev. A 65,

    062307 (2002). [7] J. Walgate and L. Hardy, Phys. Rev. Lett. 89, 147901

    (2002). [8] M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki,

  • Metrics
    No metrics available
Share - Bookmark