Poisson Processes in Free Probability

Preprint English OPEN
An, Guimei; Gao, Mingchu;
(2015)
  • Subject: Mathematics - Operator Algebras | 46L54

We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in... View more
  • References (19)
    19 references, page 1 of 2

    [MA] M. Anshelevich. Free Stochastic measures via noncrossing partitions. Adv. Math. 155(2000), No.1, 154-179.

    [MA1] M. Anshelevich. Ito formula for free stochastic integrals. J. Funct. Anal., 188(2002), 292-315.

    [MA2] M. Abshelevich. Linearization coefficients for orthogonal polynomials using stochastic processes. Ann. of Probab., 33(2005), No.1, 114-136.

    [PB] P. Bartlett. Reproducing Kernel Hilbert spaces. http://www.cs.berkeley.edu/∼bartlett/courses/281b-sp08/7.pdf.

    [BnT] O. E. Barndorff-Nielson and S. Thorjornsen. Classical and free infinite divisibility and Levy processes. Lecture Note in Math. 1866 (2006), 33-160. Springer-Verlarg Berlin-Heidelberg.

    [PBi] P. Biane. Free Brownian motion, free stochastic calculus and random matrices. Free Probability Theory edited by D. Voiculescu, 1-19, Fields Institute Communications 12, AMS, 1997.

    [BS1] P. Biane and R. Speicher. Stochastic calculus with respect to free Brownian motion and analysis on Wigner spaces. Probab. Theory Related Fields 112(1998), no.3, 373-409.

    [BS2] P. Biane and R. Speicher.Diffusion, free entropy, and free Fisher information. Ann. Inst. H. Poincare Probab. Stat. 25 (2001), 581-606.

    [BP] S. Bourguin and G. Peccati. Semicircle limits on the free Poisson chaos: counterexample to a transfor principle. J. Funct. Anal., 267(2014), No. 4, 963-997.

    [RG] R.G. Gallager. Stachastic Processes: Theory for Applications. Cambridge University Press, 2013.

  • Metrics
Share - Bookmark