Share  Bookmark

 Download from


1. V. I. Arnol′d, On conditions for nonlinear stability of plane stationary curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR, 162 (1965), pp. 975978.
2. , An a priori estimate in the theory of hydrodynamic stability, Izv. Vysˇs. Uˇcebn. Zaved. Matematika, 1966 (1966), pp. 35.
3. V. Bach, Error bound for the HartreeFock energy of atoms and molecules, Comm. Math. Phys., 147 (1992), pp. 527548.
4. V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted HartreeFock theory, Phys. Rev. Lett., 72 (1994), pp. 29812983.
5. V. Bach, E. H. Lieb, and J. P. Solovej, Generalized HartreeFock theory and the Hubbard model, J. Statist. Phys., 76 (1994), pp. 389.
6. R. D. Benguria and M. Loss, Connection between the LiebThirring conjecture for Schr¨odinger operators and an isoperimetric problem for ovals on the plane, in Partial differential equations and inverse problems, vol. 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, pp. 5361.
7. A. Bove, G. Da Prato, and G. Fano, An existence proof for the HartreeFock timedependent problem with bounded twobody interaction, Comm. Math. Phys., 37 (1974), pp. 183191.
8. L. G. Brown and H. Kosaki, Jensen's inequality in semifinite von Neumann algebras, J. Operator Theory, 23 (1990), pp. 319.
9. T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schr¨odinger equations, Comm. Math. Phys., 85 (1982), pp. 549561.
10. J. M. Chadam, The timedependent HartreeFock equations with Coulomb twobody interaction, Comm. Math. Phys., 46 (1976), pp. 99104.