publication . Article . Preprint . 2015

Modeling of Droplet Evaporation on Superhydrophobic Surfaces.

Fernandes, Heitor C. M.; Vainstein, Mendeli H.; Brito, Carolina;
Open Access
  • Published: 14 Oct 2015 Journal: Langmuir, volume 31, pages 7,652-7,659 (issn: 0743-7463, eissn: 1520-5827, Copyright policy)
  • Publisher: American Chemical Society (ACS)
Abstract
When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the...
Subjects
arXiv: Physics::Fluid Dynamics
free text keywords: Spectroscopy, Electrochemistry, General Materials Science, Surfaces and Interfaces, Condensed Matter Physics, Chemistry, Homogeneous, Droplet evaporation, Chemical physics, Surface finish, Drop (liquid), Organic chemistry, Nanotechnology, Wetting, W state, Evaporation, Wetting transition, Condensed Matter - Soft Condensed Matter, Condensed Matter - Materials Science, Physics - Computational Physics
49 references, page 1 of 4

(1) Liu, T. L.; Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096-1100.

(2) Cassie, A.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551. [OpenAIRE]

(3) Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988-994. [OpenAIRE]

(4) McHale, G.; Aqil, S.; Shirtcliffe, N.; Newton, M.; Erbil, H. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 2005, 21, 11053-11060. [OpenAIRE]

(5) Nosonovsky, M.; Bhushan, B. Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 2007, 7, 2633-2637. [OpenAIRE]

(6) Tsai, P.; Lammertink, R.; Wessling, M.; Lohse, D. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 2010, 104, 116102. [OpenAIRE]

(7) Xu, W.; Choi, C.-H. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett. 2012, 109, 024504.

(8) Park, J.; Moon, J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 2006, 22, 3506-3513.

(9) Blossey, R. Self-cleaning surfaces - virtual realities. Nat Mater 2003, 2, 301-306. [OpenAIRE]

(10) Meuler, A. J.; McKinley, G. H.; Cohen, R. E. Exploiting topographical texture to impart icephobicity. ACS Nano 2010, 4, 7048-7052.

(11) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial control in the heterogeneous nucleation of water. Applied Physics Letters 2009, 95, 094101. [OpenAIRE]

(12) Weibel, D. E.; Michels, A. F.; Feil, A. F.; Amaral, L.; Teixeira, S. R.; Horowitz, F. Adjustable hydrophobicity of al substrates by chemical surface functionalization of nano/microstructures. J. Phys. Chem. C 2010, 114, 13219-13225.

(13) Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350-1368. [OpenAIRE]

(14) Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71-99.

(15) Ramos, S. M. M.; Canut, B.; Benyagoub, A. Nanodesign of superhydrophobic surfaces. Journal of Applied Physics 2009, 106, 024305. [OpenAIRE]

49 references, page 1 of 4
Abstract
When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the...
Subjects
arXiv: Physics::Fluid Dynamics
free text keywords: Spectroscopy, Electrochemistry, General Materials Science, Surfaces and Interfaces, Condensed Matter Physics, Chemistry, Homogeneous, Droplet evaporation, Chemical physics, Surface finish, Drop (liquid), Organic chemistry, Nanotechnology, Wetting, W state, Evaporation, Wetting transition, Condensed Matter - Soft Condensed Matter, Condensed Matter - Materials Science, Physics - Computational Physics
49 references, page 1 of 4

(1) Liu, T. L.; Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096-1100.

(2) Cassie, A.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551. [OpenAIRE]

(3) Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988-994. [OpenAIRE]

(4) McHale, G.; Aqil, S.; Shirtcliffe, N.; Newton, M.; Erbil, H. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 2005, 21, 11053-11060. [OpenAIRE]

(5) Nosonovsky, M.; Bhushan, B. Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 2007, 7, 2633-2637. [OpenAIRE]

(6) Tsai, P.; Lammertink, R.; Wessling, M.; Lohse, D. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 2010, 104, 116102. [OpenAIRE]

(7) Xu, W.; Choi, C.-H. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett. 2012, 109, 024504.

(8) Park, J.; Moon, J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 2006, 22, 3506-3513.

(9) Blossey, R. Self-cleaning surfaces - virtual realities. Nat Mater 2003, 2, 301-306. [OpenAIRE]

(10) Meuler, A. J.; McKinley, G. H.; Cohen, R. E. Exploiting topographical texture to impart icephobicity. ACS Nano 2010, 4, 7048-7052.

(11) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial control in the heterogeneous nucleation of water. Applied Physics Letters 2009, 95, 094101. [OpenAIRE]

(12) Weibel, D. E.; Michels, A. F.; Feil, A. F.; Amaral, L.; Teixeira, S. R.; Horowitz, F. Adjustable hydrophobicity of al substrates by chemical surface functionalization of nano/microstructures. J. Phys. Chem. C 2010, 114, 13219-13225.

(13) Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350-1368. [OpenAIRE]

(14) Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71-99.

(15) Ramos, S. M. M.; Canut, B.; Benyagoub, A. Nanodesign of superhydrophobic surfaces. Journal of Applied Physics 2009, 106, 024305. [OpenAIRE]

49 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2015

Modeling of Droplet Evaporation on Superhydrophobic Surfaces.

Fernandes, Heitor C. M.; Vainstein, Mendeli H.; Brito, Carolina;