publication . Article . Preprint . 2019

A BRIEF SURVEY OF HIGGS BUNDLES

Zúñiga-Rojas, Ronald Alberto;
Open Access English
  • Published: 12 Jul 2019
  • Publisher: Centro de Investigación en Matemática Pura y Aplicada (CIMPA)
Abstract
Comment: 6 pages. Presented as a communication on SIMMAC--2018, UCR
Subjects
arXiv: Mathematics::Algebraic GeometryHigh Energy Physics::PhenomenologyMathematics::Symplectic GeometryHigh Energy Physics::Lattice
free text keywords: Higgs bundles, Hodge bundles, moduli spaces, stable triples, vector bundles, fibrados de Higgs, fibrados de Hodge, espacios móduli, triples estables, fibrados vectoriales, Mathematics - Algebraic Geometry, 14H60, 14D07, 55Q52

[1] M. F. Atiyah and R. Bott, (1982) “Yang-Mills equations over Riemann surfaces”, Phil. Trans. Roy. Soc. London, A 308, 523-615.

[2] S.B. Bradlow, O. Garc´ıa-Prada and P.B. Gothen, (2007) “What is a Higgs Bundle?”, Notices of the AMS, 54, No. 8, 980-981.

[3] S. B. Bradlow, O. Garc´ıa-Prada and P. B. Gothen, (2008) “Homotopy groups of moduli spaces of representations”, Topology 47, 203-224.

[4] P. B. Gothen and R. A. Zu´n˜iga-Rojas, “Stratifications on the moduli space of Higgs bundles”, Portugaliae Mathematica, EMS, 74, (2017), 127-148.

[5] T. Hausel, (1998) Geometry of Higgs bundles, Ph. D. thesis, Cambridge. [OpenAIRE]

[6] N. J. Hitchin, (1987) “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55, 59-126.

[7] D. Mumford, J. Fogarty and F. Kirwan, (1994) Geometric invariant Theory, Springer.

[8] M.S. Narasimhan and C.S. Seshadri, (1965) “Stable and Unitary Vector Bundles on a Compact Riemann Surface”, The Annals of Mathematics, Second Series Vol. 82, pp. 540-567. [OpenAIRE]

[9] Nitsure, N., (1991) “Moduli Space of Semistable Pairs on a Curve”, Proc. London Math. Soc., (3), 62, pp. 275-300. [OpenAIRE]

[10] C. T. Simpson, (1992) “Higgs bundles and local systems”, Publ. Math. IHE´S 75, 5-95.

[11] R. A. Zu´n˜iga-Rojas, (2015) Homotopy groups of the moduli space of Higgs bundles, Ph. D. thesis, Porto, Portugal.

[12] R. A. Zu´n˜iga-Rojas, (2018?) “On the Cohomology of The Moduli Space of sigmaStable Triples and (1,2)-VHS”, to appear. arXiv:1803.01936 [math.AG].

[13] R. A. Zu´n˜iga-Rojas, (2017) “Stabilization of the Homotopy Groups of The Moduli Space of k-Higgs Bundles”, to appear in Revista Colombiana de Matem´aticas arXiv:1702.07774 [math.AT].

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2019

A BRIEF SURVEY OF HIGGS BUNDLES

Zúñiga-Rojas, Ronald Alberto;