Class of the affine line is a zero divisor in the Grothendieck ring

Preprint English OPEN
Borisov, Lev;
(2014)
  • Subject: 14A10 | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Algebraic Geometry | Mathematics::Commutative Algebra

We show that the class of the affine line is a zero divisor in the Grothendieck ring of algebraic varieties over complex numbers. The argument is based on the Pfaffian-Grassmannian double mirror correspondence.
  • References (12)
    12 references, page 1 of 2

    [1] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarsczyk, Torification and Factorization of Birational Maps. J. Amer. Math. Soc. 15 (2002), no. 3, 531-572.

    [2] L. Borisov, A. Caˇldˇararu, The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom. 18 (2009), no. 2, 201-222.

    [3] J. Denef, F. Loeser, On some rational generating series occurring in arithmetic geometry. Geometric Aspects of Dwork Theory, edited by A. Adolphson, F. Baldassarri, P. Berthelot, N. Katz and F. Loeser, volume 1, de Gruyter, 509-526 (2004).

    [4] S. Galkin, E. Shinder, The Fano variety of lines and rationality problem for a cubic hypersurface. preprint arXiv:1405.5154.

    [5] I. Karzhemanov, On the cut-and-paste property of algebraic varieties, preprint arXiv:1411.6084.

    [6] J. Koll´ar, Y. Miyaoka, S. Mori, Rationally connected varieties. J. Algebraic Geom. 1 (1992), no. 3, 429-448.

    [7] A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities. Selecta Math. (N.S.) 13 (2008), no. 4, 661-696.

    [8] M. Larsen, V. Lunts, Motivic measures and stable birational geometry. Moscow Mathematical Journal, Vol.3 (1), Jan-Mar. 2003, 85-95.

    [9] M. Larsen, V. Lunts, Rationality of motivic zeta function and cut-and-paste problem, preprint arXiv:1410.7099.

    [10] D. Litt, Symmetric powers do not stabilize. Proc. Amer. Math. Soc. 142 (2014), no. 12, 4079-4094.

  • Metrics
Share - Bookmark