Braun-Le Chatelier principle in dissipative thermodynamics

Article, Preprint English OPEN
Pavelka, Michal; Grmela, Miroslav;
(2016)
  • Publisher: Accademia Peloritana dei Pericolanti
  • Journal: Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali (issn: 1825-1242)
  • Related identifiers: doi: 10.1478/AAPP.97S1A22
  • Subject: Physics - Chemical Physics | stability; non-equilibrium thermodynamics; force-flux relations; dissipation potential | Physics - Fluid Dynamics | Physics, Chemistry, Mathematics | AMS: 80A17, 80A32, 70K20

Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of a thermodynamic potential. Analogically, from convexity of a diss... View more
  • References (14)
    14 references, page 1 of 2

    [1] P. Atkins and J. De Paula. Atkins' Physical Chemistry. Oxford University Press, 2002.

    [2] H. Callen. Thermodynamics: an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. Wiley, 1960.

    [3] H. L. Chatelier. Sur un ´enonc´e g´en´eral des lois des ´equilibres chimiques. Comptes-rendus de l'Acad´emie des sciences, 99:786-789, 1884.

    [4] S. R. de Groot and P. Mazur. Non-equilibrium Thermodynamics. Dover Publications, New York, 1984.

    [5] A. Elafif, M. Grmela, and G. Lebon. Rheology and diffusion in simple and complex fluids. J. Non-newtonian Fluid Mech., 86:253-275, 1999.

    [6] J. W. Gibbs. Collected Works. Longmans; Green and Comp. New York, 1984.

    [7] M. Grmela, V. Klika, and M. Pavelka. Reductions and extensions in mesoscopic dynamics. Physical Review E, 92(3):032111, 2015.

    [8] M. Grmela and H. C. O¨ ttinger. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E, 56:6620-6632, Dec 1997.

    [9] S. Kjelstrup and D. Bedeaux. Non-Equilibrium Thermodynamics of Heterogeneous Systems. Series on Advances in Statistical Mechanics. World Scientific, 2008.

    [10] L. Landau and E. Lifschitz. Statistical physics. Number pt. 1 in Course of theoretical physics. Pergamon Press, 1969.

  • Metrics
    No metrics available