Dirichlet Process Parsimonious Mixtures for clustering

Preprint English OPEN
Chamroukhi, Faicel; Bartcus, Marius; Glotin, Hervé;
(2015)
  • Subject: Statistics - Machine Learning | Computer Science - Machine Learning | Statistics - Methodology
    arxiv: Statistics::Computation | Statistics::Methodology

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estim... View more
  • References (34)
    34 references, page 1 of 4

    [1] G. J. McLachlan, D. Peel., Finite Mixture Models, New York: Wiley, 2000.

    [2] G. J. McLachlan, K. E. Basford, Mixture Models: Inference and Applications to Clustering, Marcel Dekker, New York, 1988.

    [3] J. D. Banfield, A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics 49 (3) (1993) 803-821.

    [4] C. Fraley, A. E. Raftery, Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association 97 (2002) 611-631.

    [5] G. Celeux, G. Govaert, Gaussian Parsimonious Clustering Models., Pattern Recognition 28 (5) (1995) 781-793.

    [6] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of The Royal Statistical Society, B 39(1) (1977) 1-38.

    [7] G. J. McLachlan, T. Krishnan, The EM algorithm and extensions, Wiley, 1997.

    [8] M. Stephens, Bayesian Methods for Mixtures of Normal Distributions, Ph.D. thesis, University of Oxford (1997).

    [9] C. Fraley, A. E. Raftery, Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering, Tech. Rep. 486, Departament of Statistics, University of Washington Seattle (2005).

    [10] C. Fraley, A. E. Raftery, Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering, Journal of Classification 24 (2) (2007) 155-181.

  • Related Organizations (3)
  • Metrics
Share - Bookmark