Bairamov, I. and Stepanov, A. (2010). Numbers of near-maxima for the bivariate case, Statistics & Probability Letters, 80, 196-205.

Bhattacharya, B.B. (1974). Convergence of sample paths of normalized sums of induced order statistics, Ann. Statist. , 2, 1034-1039. [OpenAIRE]

Bhattacharya, B.B. (1984). Induced order statistics: theory and applications, In Handbook of Statistics 4, Ed. Krishnaiah, P. R. andSen, P. K., North Holland, Amsterdam, 383-403.

Chu, S.J., Huang, W.J. and Chen, H. (1999). A study of asymptotic distributions of concomitants of certain order statistics, Statist. Sinica, 9, 811-830.

Daniels, H. E. (1950). Rank correlation and population models, Journal of the Royal Statistical Society, Ser. B, 12 (2), 171-191.

David, H.A. (1994). Concomitants of Extreme Order Statistics, In Extreme Value Theory and Applications, Proceedings of the Conference on Extreme Value Theory and Applications, 1, Ed. Galambos, J., Lechner, J., and Simiu, E., Kluwer Academic Publishers, Boston 211-224.

David, H.A. and Galambos, J. (1974). The asymptotic theory of concomitants of order statistics, J. Appl. Probab., 11, 762-770.

David, H.A. and Nagaraja, H.N. (2003). Order Statistics, Third edition, John Wiley & Sons, NY.

Durbin J. and Stuart, A. (1951). Inversions and rank correlation coefficients, Journal of the Royal Statistical Society, Ser. B 13 (2), 303-309.

Egorov, V. A. and Nevzorov, V. B. (1984). Rate of convergence to the Normal law of sums of induced order statistics, Journal of Soviet Mathematics (New York), 25, 1139-1146.

Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample, Metron, 1, 3-32.

Goel, P. K. and Hall, P. (1994). On the average difference between concomitants and order statistics, Ann. Probab., 22, 126-144. [OpenAIRE]

Kendall, M. G. (1970). Rank Correlation Methods, London, Griffin.

Xu, W., Hou, Y., Hung, Y. S. and Zou, Y. (2009). Comparison of Spearmans rho and Kendalls tau in Normal and Contaminated Normal Models, arXiv:1011.2009v1 [cs.IT].