publication . Preprint . 2016

Coherence for vectorial waves and majorization

Luis, Alfredo;
Open Access English
  • Published: 04 Mar 2016
We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.
Persistent Identifiers
free text keywords: Physics - Optics
Download from

[1] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014); S. Cheng and M. J. W. Hall, Complementarity relations for quantum coherence, Phys. Rev. A 92, 042101 (2015).

[2] B. Karczewski, Degree of coherence of the electromagnetic eld, Phys. Lett. 5, 191{192 (1963); E. Wolf, Unied theory of coherence and polarization of random electromagnetic beams, Phys. Lett. A 312, 263{267 (2003).

[3] J. Tervo, T. Setala, and A. T. Friberg, Degree of coherence for electromagnetic elds, Opt. Express 11, 1137{ 1143 (2003).

[4] P. Refregier and F. Goudail, Invariant degrees of coherence of partially polarized light, Opt. Express 13, 6051{ 6060 (2005). [OpenAIRE]

[5] H. M. Ozaktas, S. Yuksel, and M. A. Kutay, Linear algebraic theory of partial coherence: discrete elds and measures of partial coherence, J. Opt. Soc. Am. A 19, 1563{1571 (2002).

[6] A. Luis, Degree of coherence for vectorial electromagnetic elds as the distance between correlation matrices, J. Opt. Soc. Am. A 24, 1063{1068 (2007); A. Luis, Overall degree of coherence for vectorial electromagnetic elds and the Wigner function, J. Opt. Soc. Am. A 24, 2070{2074 (2007); A. Luis, Coherence and visibility for vectorial light, J. Opt. Soc. A 27, 1764{1769 (2010).

[7] A. Luis, Quantum-classical correspondence for visibility, coherence, and relative phase for multidimensional systems, Phys. Rev. A 78, 025802 (2008).

[8] O. Gamel and D. F. V. James, Measures of quantum state purity and classical degree of polarization Phys. Rev. A 86, 033830 (2012).

[9] J. J. Gil, Polarimetric characterization of light and media. Physical quantities involved in polarimetric phenomena, Eur. Phys. J. Appl. Phys. 40, 147 (2007); J. J. Gil, Interpretation of the coherency matrix for threedimensional polarization states, Phys. Rev. A 90, 043858 (2014); J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).

[10] Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998); A. Luis, Degree of polarization in quantum optics, Phys. Rev. A 66, 013806 (2002); A. Picozzi, Entropy and degree of polarization for nonlinear optical waves, Opt. Lett. 29, 1653{ 1655 (2004); Ph. Refregier, Polarization degree of optical waves with non-Gaussian probability density functions: Kullback relative entropy-based approach, Opt. Lett. 30, 1090{1092 (2005); Ph. Refregier and F. Goudail, Kullback relative entropy and characterization of partially polarized optical waves, J. Opt. Soc. Am. A 23, 671{678 (2006).

[11] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications (Academic Press, New York, 1980); J. Aczel and Z. Daroczy, On Measures of Information and Their Characterization (Academic Press, New York, 1975).

[12] A. Renyi, On the measures of entropy and information, Proc. 4th Berkeley Symp. on Mathematics and Statistical Probability (University of California Press, 1961), Vol. 1, pp. 547{561; Ch. Beck, Generalised information and entropy measures in physics, Contemporary Physics 50, 495{510 (2009). [OpenAIRE]

[13] O. Gamel and D. F. V. James, Majorization and measures of classical polarization in three dimensions, J. Opt. Soc. Am. A 31, 1620{1626 (2014).

[14] G. Piquero, J. M. Movilla, P. M. Mej as, R. Mart nezherrero, Degree of polarization of non-uniformly partially polarized beams: a proposal, Opt. Quantum Electron. 31, 223{226 (1999); A. Luis, Coherence, polarization, and entanglement for classical light elds, Opt. Commun. 282, 3665{3670 (2009). [OpenAIRE]

[15] I. Bengtsson and K. Z_yczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, Cambridge, 2006.

Any information missing or wrong?Report an Issue