## Coherence for vectorial waves and majorization

*Luis, Alfredo*;

Related identifiers: doi: 10.1364/OL.41.005190 - Subject: Physics - Optics

- References (15) 15 references, page 1 of 2
- 1
- 2

[1] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014); S. Cheng and M. J. W. Hall, Complementarity relations for quantum coherence, Phys. Rev. A 92, 042101 (2015).

[2] B. Karczewski, Degree of coherence of the electromagnetic eld, Phys. Lett. 5, 191{192 (1963); E. Wolf, Unied theory of coherence and polarization of random electromagnetic beams, Phys. Lett. A 312, 263{267 (2003).

[3] J. Tervo, T. Setala, and A. T. Friberg, Degree of coherence for electromagnetic elds, Opt. Express 11, 1137{ 1143 (2003).

[4] P. Refregier and F. Goudail, Invariant degrees of coherence of partially polarized light, Opt. Express 13, 6051{ 6060 (2005).

[5] H. M. Ozaktas, S. Yuksel, and M. A. Kutay, Linear algebraic theory of partial coherence: discrete elds and measures of partial coherence, J. Opt. Soc. Am. A 19, 1563{1571 (2002).

[6] A. Luis, Degree of coherence for vectorial electromagnetic elds as the distance between correlation matrices, J. Opt. Soc. Am. A 24, 1063{1068 (2007); A. Luis, Overall degree of coherence for vectorial electromagnetic elds and the Wigner function, J. Opt. Soc. Am. A 24, 2070{2074 (2007); A. Luis, Coherence and visibility for vectorial light, J. Opt. Soc. A 27, 1764{1769 (2010).

[7] A. Luis, Quantum-classical correspondence for visibility, coherence, and relative phase for multidimensional systems, Phys. Rev. A 78, 025802 (2008).

[8] O. Gamel and D. F. V. James, Measures of quantum state purity and classical degree of polarization Phys. Rev. A 86, 033830 (2012).

[9] J. J. Gil, Polarimetric characterization of light and media. Physical quantities involved in polarimetric phenomena, Eur. Phys. J. Appl. Phys. 40, 147 (2007); J. J. Gil, Interpretation of the coherency matrix for threedimensional polarization states, Phys. Rev. A 90, 043858 (2014); J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).

[10] Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998); A. Luis, Degree of polarization in quantum optics, Phys. Rev. A 66, 013806 (2002); A. Picozzi, Entropy and degree of polarization for nonlinear optical waves, Opt. Lett. 29, 1653{ 1655 (2004); Ph. Refregier, Polarization degree of optical waves with non-Gaussian probability density functions: Kullback relative entropy-based approach, Opt. Lett. 30, 1090{1092 (2005); Ph. Refregier and F. Goudail, Kullback relative entropy and characterization of partially polarized optical waves, J. Opt. Soc. Am. A 23, 671{678 (2006).

- Metrics No metrics available

- Download from

- Cite this publication