Spin entanglement, decoherence and Bohm's EPR paradox

Preprint English OPEN
Cavalcanti, E. G. ; Drummond, P. D. ; Bachor, H. A. ; Reid, M. D. (2007)

We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies {\eta} > 1/3 and {\eta} > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.
  • References (23)
    23 references, page 1 of 3

    [1] A. Einstein, B. Podolsky and N. Rosen,Phys. Rev. 47, 777(1935).

    [2] J. S. Bell, Physics 1, 195 (1965).

    [3] A. Garg and N. D. Mermin, Phys. Rev. D 35, 3831-3835 (1987).

    [4] P. Skwara , H. Kampermann, H. M. Kleinmann and D. Bruss,. Phys. Rev. A 76, 012312 (2007) .

    [5] P. G. Kwiat., K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).

    [6] A. Fedrizzi, T. Herbst, T. Jenneweinand A. Zeilinger, arXiv:0706.2877 (2007).

    [7] G. Toth, Phys. Rev. A 69, 052327 (2004).

    [18] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    [8] J. K. Korbicz, O. Ghne , M. Lewenstein, H. Hner, C. F. Roos, and R. Blatt, Phys. Rev. A 74, 052319 (2006).

    [9] D. Bohm, Quantum Theory (Englewood Clis, NJ, Prentice-Hall, 1951).

  • Metrics
    No metrics available
Share - Bookmark