# Cut-Elimination and Proof Search for Bi-Intuitionistic Tense Logic

- Published: 24 Jun 2010

- 1
- 2

[1] G. Amati and F. Pirri. A uniform tableau method for intuitionistic modal logics i. Studia Logica, 53(1):29-60, 1994.

[2] K Bru¨nnler and L Straßburger Modular Sequent Systems for Modal Logic In Proc. TABLEAUX, LNCS:5607;152-166. Springer, 2009. [OpenAIRE]

[3] M J Collinson, B. Hilken and D. Rydeheard. Semantics and proof theory of an intuitionistic modal sequent calculus. Technical report, University of Manchester, UK, 1999.

[4] T. Crolard. A formulae-as-types interpretation of Subtractive Logic. J. of Logic and Comput., 14(4):529-570, 2004.

[5] R. Davies and F. Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555-604, 2001.

[6] W. B. Ewald. Intuitionistic tense and modal logic. J. Symb. Log, 51(1):166-179, 1986.

[7] D. Galmiche and Y. Salhi. Calculi for an intuitionistic hybrid modal logic. In Proc. IMLA, 2008. [OpenAIRE]

[8] R. Gor´e. Substructural logics on display. Log. J of Interest Group in Pure and Applied Logic, 6(3):451- 504, 1998.

[9] R. Gor´e, L. Postniece, and A. Tiu. Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In Proc. AiML 7:43-66. College Publications, 2008. [OpenAIRE]

[10] R. Gor´e, L. Postniece, and A. Tiu. Taming displayed tense logics using nested sequents with deep inference. In Proc. TABLEAUX, LNCS:5607;189-204. Springer, 2009. [OpenAIRE]

[11] Y. Kakutani. Calculi for intuitionistic normal modal logic. In Proceedings of PPL 2007.

[12] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53:119-135, 1994.

[13] A. Masini. 2-sequent calculus: Intuitionism and natural deduction. J. Log. Comput., 3(5):533-562, 1993.

[14] G Mints. On some calculi of modal logic. Proc. Steklov Inst. of Mathematics, 98:97-122, 1971.

[15] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for distributed computing. In LICS, pages 286-295, 2004.

- 1
- 2

- 1
- 2

[1] G. Amati and F. Pirri. A uniform tableau method for intuitionistic modal logics i. Studia Logica, 53(1):29-60, 1994.

[2] K Bru¨nnler and L Straßburger Modular Sequent Systems for Modal Logic In Proc. TABLEAUX, LNCS:5607;152-166. Springer, 2009. [OpenAIRE]

[3] M J Collinson, B. Hilken and D. Rydeheard. Semantics and proof theory of an intuitionistic modal sequent calculus. Technical report, University of Manchester, UK, 1999.

[4] T. Crolard. A formulae-as-types interpretation of Subtractive Logic. J. of Logic and Comput., 14(4):529-570, 2004.

[5] R. Davies and F. Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555-604, 2001.

[6] W. B. Ewald. Intuitionistic tense and modal logic. J. Symb. Log, 51(1):166-179, 1986.

[7] D. Galmiche and Y. Salhi. Calculi for an intuitionistic hybrid modal logic. In Proc. IMLA, 2008. [OpenAIRE]

[8] R. Gor´e. Substructural logics on display. Log. J of Interest Group in Pure and Applied Logic, 6(3):451- 504, 1998.

[9] R. Gor´e, L. Postniece, and A. Tiu. Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In Proc. AiML 7:43-66. College Publications, 2008. [OpenAIRE]

[10] R. Gor´e, L. Postniece, and A. Tiu. Taming displayed tense logics using nested sequents with deep inference. In Proc. TABLEAUX, LNCS:5607;189-204. Springer, 2009. [OpenAIRE]

[11] Y. Kakutani. Calculi for intuitionistic normal modal logic. In Proceedings of PPL 2007.

[12] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53:119-135, 1994.

[13] A. Masini. 2-sequent calculus: Intuitionism and natural deduction. J. Log. Comput., 3(5):533-562, 1993.

[14] G Mints. On some calculi of modal logic. Proc. Steklov Inst. of Mathematics, 98:97-122, 1971.

[15] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for distributed computing. In LICS, pages 286-295, 2004.

- 1
- 2