On the linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

Preprint English OPEN
Johnson, Thomas; (2018)
  • Subject: Mathematical Physics | Mathematics - Analysis of PDEs | Mathematics - Differential Geometry
    arxiv: General Relativity and Quantum Cosmology

In a recent seminal paper \cite{D-H-R} of Dafermos, Holzegel and Rodnianski the linear stability of the Schwarzschild family of black hole solutions to the Einstein vacuum equations was established by imposing a double null gauge. In this paper we shall prove that the S... View more
  • References (11)
    11 references, page 1 of 2

    7 The Regge-Wheeler and Zerilli equations and the gauge-invariant hierarchy 45 7.1 The Regge-Wheeler and Zerilli equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.2 The connection to the system of gravitational perturbations . . . . . . . . . . . . . . . . . . . . 46

    8 Initial data and well-posedness of linearised gravity 49 8.1 Initial data for linearised gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.2 The well-posedness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.3 Pointwise strong asymptotic flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    9 Gauge-normalised solutions and identification of the Kerr parameters 53 9.1 The Km,a-adapted Regge-Wheeler gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.2 Achieving the Km,a-adapted Regge-Wheeler gauge: the initial-data-normalised solution S˚m,a . . 54 9.3 Global properties of the solution S˚m,a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    10 Precise statements of the main theorems 57 10.1 Flux and integrated decay norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.2 Theorem 1: Boundedness and decay for the initial-data-normalised solution S˚m,a . . . . . . . . 59 10.3 Theorem 2: Boundedness and decay for solutions to the Regge-Wheeler and Zerilli equations on the Schwarzschild exterior spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    11 Proof of Theorem 1 61 11.1 Decay for the gauge-invariant quantities Φ(1) and Ψ(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11.2 Completing the proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A Initial data for the equations of linearised gravity 62 A.1 Constructing admissible initial data from seed data . . . . . . . . . . . . . . . . . . . . . . . . 62 A.2 Propagation of strong asymptotic flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 [7] S. Aretakis, Horizon instability of extremal black holes, Adv. Theor. Math. Phys., 19 (2015), pp. 507-530.

    [46] S. Chandrasekhar, On the equations governing the perturbations of the Schwarzschild black hole, P. Roy. Soc. Lond. A Mat., 343 (1975), pp. 289-298.

    [47] --, The Mathematical Theory of Black Holes, Oxford University Press, Oxford, 3 ed., 1992.

    [48] G. Dotti, Nonmodal linear stability of the Schwarzschild black hole, Phys. Rev. Lett., 112 (2014).

    [49] F. Finster and J. Smoller, Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry, Adv. Theor. Math. Phys., 13 (2009), pp. 71-110.

    [51] S. Teukolsky, Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys. J., 185 (1973), pp. 635-648.

  • Similar Research Results (8)
  • Metrics
    No metrics available
Share - Bookmark