publication . Article . Other literature type . Preprint . 2015

Critical points of multidimensional random Fourier series: Variance estimates

Liviu I. Nicolaescu;
Open Access
  • Published: 16 Nov 2015 Journal: Journal of Mathematical Physics, volume 57, page 83,304 (issn: 0022-2488, eissn: 1089-7658, Copyright policy)
  • Publisher: AIP Publishing
Abstract
Comment: 44 pages. Fixed typos, improved presentation, added references
Persistent Identifiers
Subjects
free text keywords: Mathematical Physics, Statistical and Nonlinear Physics, central limit theorem, critical points, Gaussian Hilbert spaces, Gaussian random functions, Kac–Rice formula, Wiener chaos, Mathematics - Probability, Mathematics - Functional Analysis, 60B20, 60D05, 60F05, 60G15, Mathematics - Analysis of PDEs, Mathematics - Differential Geometry, 60D05, 42B99, 15B25, Random variable, Smoothness, Fourier series, Gaussian random field, Critical point (mathematics), Mathematics, Gaussian, symbols.namesake, symbols, Mathematical analysis, White noise, Stochastic process, Applied mathematics

[1] R. Adler, R.J.E. Taylor: Random Fields and Geometry, Springer Monographs in Mathematics, Springer Verlag, 2007.

[2] G. W. Anderson, A. Guionnet, O. Zeitouni: An Introduction to Random Matrices, Cambridge University Press, 2010.

[3] J.-M. Aza¨ıs, M. Wschebor: Level Sets and Extrema of Random Processes, John Wiley & Sons, 2009. [OpenAIRE]

[4] P. Deift, D. Gioev: Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes, vol. 18, Amer. Math. Soc., 2009.

[5] Y. V. Fyodorov: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices, Pys. Rev. Lett, 92(2004), 240601; Erratum: 93(2004), 149901. [OpenAIRE]

[6] A. Granville, I. Wigman: The distribution of zeroes of random trigonometric polynomials, Amer. J. Math. 133(2011), 295-357. arXiv: 0809.1848

[7] L. H o¨rmander: The Analysis of Linear Partial Differential Operators I. , Springer Verlag, 2003.

[8] L.I. Nicolaescu: Lectures on the Geometry of Manifolds, 2nd Edition, World Scientific, 2007.

[9] L.I. Nicolaescu: Critical sets of random smooth functions on compact manifolds, arXiv: 1101.5990

[10] L.I. Nicolaescu: Random Morse functions and spectral geometry, preprint.

Any information missing or wrong?Report an Issue