publication . Preprint . 1995

The classical r-matrix method for nonlinear sigma-model

Sevostyanov, Alexey;
Open Access English
  • Published: 07 Sep 1995
Comment: 18 pages, LaTeX
arXiv: Nonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics::Symplectic Geometry
free text keywords: High Energy Physics - Theory
Download from

[1] V.I.Arnold (1980) Mathematical methods of classical mechanics, Springer-Verlag.

[2] R.Abraham,J.E.Marsden (1978) Foundations of Mechanics, The Benjamin/Cummings Publishing Company,Inc. .

[3] S.Helgason (1978) Differential geometry,Lie groups,and symmetric spaces,New-York:Academic Press.

[4] L.D.Faddeev, M.A.Semenov-Tian-Shansky (1977) On the theory of nonlinear chiral fields, Vestnik Leningr. Univ.,v.13.n. 3.

[5] L.D.Faddeev, N.Yu.Reshetikhin (1986) Integrability of the principal chiral field in 1+1 dimension, Ann. Phys. , v.2,n.2,p.p. 227-256.

[6] L.D.Faddeev, L.A.Takhtajan (1987) Hamiltonian Methods in the Theory of Solitons, Berlin: Springer. [OpenAIRE]

[7] A.A.Kirillov (1972) Elements of representation theory, Moskow: Nauka.

[8] A.G.Reyman, M.A.Semenov-Tian-Shansky (1987) Compatible Poisson brackets for Lax equations and classical r-matrices, Zap. Nauchn. Semin. LOMI, v.164, p.p. 176-188.

[9] A.G.Reyman, M.A.Semenov-Tian-Shansky (1986) Lie algebras and Lax equations with a spectral parameter on an elliptic curve, Zap. Nauchn. Semin. LOMI, v.150, p.p. 104-118.

[10] M.A.Semenov-Tian-Shansky (1983) What is the classical r-matrix Funct. Anal. i ego Pril.,v.17,n.4.p.p. 17-33.

[11] M.A.Semenov-Tian-Shansky (1992) Monodromy map and classical rmatrices, Zap. Nauchn. Semin. LOMI, v.200,p.p. 156-166.

[12] I.V.Cherednik (1983), Funct. Anal. i ego Pril., v.14, n.3, p.p. 93-95.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue