The classical r-matrix method for nonlinear sigma-model

Preprint English OPEN
Sevostyanov, Alexey;
  • Related identifiers: doi: 10.1142/S0217751X96001978
  • Subject: High Energy Physics - Theory
    arxiv: Mathematics::Symplectic Geometry | Nonlinear Sciences::Exactly Solvable and Integrable Systems

The canonical Poisson structure of nonlinear sigma-model is presented as a Lie-Poisson r-matrix bracket on coadjoint orbits. It is shown that the Poisson structure of this model is determined by some `hidden singularities' of the Lax matrix.
  • References (12)
    12 references, page 1 of 2

    [1] V.I.Arnold (1980) Mathematical methods of classical mechanics, Springer-Verlag.

    [2] R.Abraham,J.E.Marsden (1978) Foundations of Mechanics, The Benjamin/Cummings Publishing Company,Inc. .

    [3] S.Helgason (1978) Differential geometry,Lie groups,and symmetric spaces,New-York:Academic Press.

    [4] L.D.Faddeev, M.A.Semenov-Tian-Shansky (1977) On the theory of nonlinear chiral fields, Vestnik Leningr. Univ.,v.13.n. 3.

    [5] L.D.Faddeev, N.Yu.Reshetikhin (1986) Integrability of the principal chiral field in 1+1 dimension, Ann. Phys. , v.2,n.2,p.p. 227-256.

    [6] L.D.Faddeev, L.A.Takhtajan (1987) Hamiltonian Methods in the Theory of Solitons, Berlin: Springer.

    [7] A.A.Kirillov (1972) Elements of representation theory, Moskow: Nauka.

    [8] A.G.Reyman, M.A.Semenov-Tian-Shansky (1987) Compatible Poisson brackets for Lax equations and classical r-matrices, Zap. Nauchn. Semin. LOMI, v.164, p.p. 176-188.

    [9] A.G.Reyman, M.A.Semenov-Tian-Shansky (1986) Lie algebras and Lax equations with a spectral parameter on an elliptic curve, Zap. Nauchn. Semin. LOMI, v.150, p.p. 104-118.

    [10] M.A.Semenov-Tian-Shansky (1983) What is the classical r-matrix Funct. Anal. i ego Pril.,v.17,n.4.p.p. 17-33.

  • Related Organizations (1)
  • Metrics
Share - Bookmark