An algorithm to compute the canonical basis of an irreducible Uq(g)-module

Preprint English OPEN
de Graaf, W. A.;
(2002)
  • Subject: 17B37 | Mathematics - Representation Theory | Mathematics - Quantum Algebra
    arxiv: Mathematics::Representation Theory

An algorithm is described to compute the canonical basis of an irreducible module over a quantized enveloping algebra of a finite-dimensional semisimple Lie algebra. The algorithm works for modules that are constructed as a submodule of a tensor product of modules with ... View more
  • References (17)
    17 references, page 1 of 2

    [1] N. Bourbaki. Groupes et Alg`ebres de Lie, Chapitres 4, 5 et 6. Hermann, Paris, 1968.

    [2] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.3, 2002. (\protect\vrule width0pt\protect\href{http://www.gap-system.org}{http://www.gap-sys

    [3] W. A. de Graaf. QuaGroup. a GAP share package, 2001. (\protect\vrule width0pt\protect\href{http://www.math.uu.nl/people/graaf/quagroup.h

    [4] W. A. de Graaf. Constructing canonical bases of quantized enveloping algebras. Experimental Mathematics, page to appear, 2002.

    [5] W. A. de Graaf. Five constructions of representations of quantum groups. preprint, 2002.

    [6] J. C. Jantzen. Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics. American Mathematical Society, 1996.

    [7] S. Kang and K. C. Misra. Crystal bases and tensor product decompositions of Uq(G2)- modules. J. Algebra, 163(3):675-691, 1994.

    [8] M. Kashiwara. Similarity of crystal bases. In Lie algebras and their representations (Seoul, 1995), pages 177-186. Amer. Math. Soc., Providence, RI, 1996.

    [9] M. Kashiwara and T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra, 165(2):295-345, 1994.

    [10] V. Lakshmibai. Bases for quantum Demazure modules. In Representations of groups (Banff, AB, 1994), pages 199-216. Amer. Math. Soc., Providence, RI, 1995.

  • Metrics
Share - Bookmark