[1] B. H. Bowditch. A variation on the unique product property. J. London Math. Soc. (2), 62(3):813-826, 2000.

[2] R. G. Burns and V. W. D. Hale. A note on group rings of certain torsion-free groups. Canad. Math. Bull., 15:441-445, 1972.

[3] Marc Culler and John W. Morgan. Group actions on R-trees. Proc. London Math. Soc. (3), 55(3):571-604, 1987.

[4] Colin D. Fox. Can a Fibonacci group be a unique products group? Bull. Austral. Math. Soc., 19(3):475-477, 1978.

[5] Jacques Lewin. A note on zero divisors in group-rings. Proc. Amer. Math. Soc., 31:357-359, 1972.

[6] Donald S. Passman. The algebraic structure of group rings. Robert E. Krieger Publishing Co. Inc., Melbourne, FL, 1985. Reprint of the 1977 original.

[7] S. David Promislow. A simple example of a torsion-free, nonunique product group. Bull. London Math. Soc., 20(4):302-304, 1988.

[8] Eliyahu Rips and Yoav Segev. Torsion-free group without unique product property. J. Algebra, 108(1):116-126, 1987.

[9] Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.

Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA Email:wcarter@math.ou.edu