publication . Article . Preprint . 2016

Total quantum coherence and its applications

Yu, Chang-shui; Yang, Yi-ren; Guo, Bao-qing;
Open Access
  • Published: 28 Jun 2016 Journal: Quantum Information Processing, volume 15, pages 3,773-3,784 (issn: 1570-0755, eissn: 1573-1332, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
Quantum coherence is the most fundamental feature of quantum mechanics. The usual understanding of it depends on the choice of the basis, that is, the coherence of the same quantum state is different within different reference framework. To reveal all the potential coherence, we present the total quantum coherence measures in terms of two different methods. One is optimizing maximal basis-dependent coherence with all potential bases considered and the other is quantifying the distance between the state and the incoherent state set. Interestingly, the coherence measures based on relative entropy and $l_2$ norm have the same form in the two different methods. In p...
Subjects
free text keywords: Signal Processing, Theoretical Computer Science, Modelling and Simulation, Electrical and Electronic Engineering, Electronic, Optical and Magnetic Materials, Statistical and Nonlinear Physics, Quantum channel, Degree of coherence, Quantum discord, Quantum mechanics, Physics, Coherence (physics), Quantum process, Quantum electrodynamics, Coherence theory, Coherence (statistics), Mutual coherence, Quantum Physics
Related Organizations
30 references, page 1 of 2

1. Winter, R. G., Steinberg, A. M., Attwood, D.: Coherence. Accessscience (McGraw-Hill, 2008). Available at: http://accessscience.com/content/coherence/146900.

2. Horodecki, R. et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

3. Henderson, L. , Vedral V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001).

4. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003).

5. Ollivier, H. , Zurek, W. H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001).

6. Scully, M. O. et al.: Extracting work from a single heat bath via vanishing quantum coherence, Science 299, 862 (2003).

7. Scully, M. O. et al.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. U. S. A. 108, 15097 (2011).

8. Huelga, S. F. , Plenio, M. B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013). [OpenAIRE]

9. Nielsen, M. A. , Chuang, I. L.: Quantum Computation and Quantum Information Ch.1, 30-38 (Cambridge University Press, Cambridge, 2000).

10. Plenio, M. B. , Virmani, S.: An Introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007).

11. Modi, K. et al.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012).

12. Baumgratz, T., Cramer. M. , Plenio, M. B.: Quantifying coherence. Phys. Rev. Lett. 113,140401 (2014). [OpenAIRE]

13. Walls, D. F. , Milburn, G. J.: Quantum Optics Ch.16, 297-303 (Springer- Verlag, Berlin Heidelberg, 1994).

14. Datta, A., Shaji, A. , Caves, C. M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008).

15. Knill, E. , Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998).

30 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2016

Total quantum coherence and its applications

Yu, Chang-shui; Yang, Yi-ren; Guo, Bao-qing;