Share  Bookmark

 Download from


[1] S. Bloch and A. Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (2000), no. 1, 160.
[2] S. R. Carrell and I. P. Goulden, Symmetric functions, codes of partitions and the KP hierarchy, J. Algebraic Combin. 32 (2010), no. 2, 211226.
[3] H. Garland, The arithmetic theory of loop groups, Inst. Hautes EĀ“tudes Sci. Publ. Math. (1980), no. 52, 5136.
[4] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. (1983), no. 19, 9431001.
[5] V.G. Kac, Infinite dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990.
[6] V.G. Kac, A.K. Raina, and N. Rozhkovskaya, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, World Sci. Publ., 2013.
[7] I.G. Macdonald, Symmetric functions and hall polynomials, Oxford University Press, 1995.
[8] T. Miwa, M. Jimbo, and E. Date, Solitons. Differential equations, symmetries, and infinitedimensional algebras, Cambridge University Press, 2000.
[9] A. Okounkov, Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), no. 2, 5781.
[10] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S.) 2 (1996), no. 4, 581605.