# Comments related to infinite wedge representations

- Published: 29 Jun 2016

[1] S. Bloch and A. Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (2000), no. 1, 1-60.

[2] S. R. Carrell and I. P. Goulden, Symmetric functions, codes of partitions and the KP hierarchy, J. Algebraic Combin. 32 (2010), no. 2, 211-226.

[3] H. Garland, The arithmetic theory of loop groups, Inst. Hautes E´tudes Sci. Publ. Math. (1980), no. 52, 5-136.

[4] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. (1983), no. 19, 943-1001. [OpenAIRE]

[5] V.G. Kac, Infinite dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990.

[6] V.G. Kac, A.K. Raina, and N. Rozhkovskaya, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, World Sci. Publ., 2013. [OpenAIRE]

[7] I.G. Macdonald, Symmetric functions and hall polynomials, Oxford University Press, 1995.

[8] T. Miwa, M. Jimbo, and E. Date, Solitons. Differential equations, symmetries, and infinite-dimensional algebras, Cambridge University Press, 2000.

[9] A. Okounkov, Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), no. 2, 57-81. [OpenAIRE]

[10] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S.) 2 (1996), no. 4, 581-605. [OpenAIRE]

[11] M. Roth and N. Yui, Mirror symmetry for elliptic curves: the A-model (fermionic) counting, Motives, quantum field theory, and pseudodifferential operators, Clay Math. Proc., vol. 12, Amer. Math. Soc., Providence, RI, 2010, pp. 245-283.

[12] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes E´tudes Sci. Publ. Math. (1985), no. 61, 5 - 65.

[13] C.A. Weibel, An introduction to homological algebra, Cambridge University Press, 1994. Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada