Chimera states in bursting neurons

Preprint English OPEN
Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.;
(2015)
  • Related identifiers: doi: 10.1103/PhysRevE.93.012205
  • Subject: Nonlinear Sciences - Chaotic Dynamics
    mesheuropmc: fungi
    arxiv: Quantitative Biology::Neurons and Cognition | Nonlinear Sciences::Pattern Formation and Solitons | Nonlinear Sciences::Cellular Automata and Lattice Gases | Nonlinear Sciences::Adaptation and Self-Organizing Systems

We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e.... View more
  • References (35)
    35 references, page 1 of 4

    [1] A. Shilnikov and G. Cymbalyuk, Phys. Rev. Lett. 94, 048101 (2005); F. Frohlich and M. Bazhenov,Phys. Rev. E 74, 031922 (2006); M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Ku¨rths, Phys. Rev. Lett. 98, 108101 (2007).

    [2] M. Dhamala, V. K. Jirsa, and M. Ding, Phys. Rev. Lett. 92, 028101 (2004); Y. Shen, Z. Hou, and H. Xin, Phys. Rev. E 77, 031920 (2008); M. Rosenbluh, Y. Aviad, E. Cohen, L. Khaykovich, W. Kinzel, E. Kopelowitz, P. Yoskovits, and I. Kanter, Phys. Rev. E 76, 046207 (2007); M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths, Phys. Rev. Lett. 93, 134101 (2004).

    [3] D. Somers and N. Kopell, Biol. Cybernet. 68, 393 (1993); C. A. S. Batista, R. L. Viana, F. A. S. Ferrari, S. R. Lopes, A. M. Batista, and J. C. P. Coninck, Phys. Rev. E 87, 042713 (2013); X. Liang, M. Tang, M. Dhamala, and Z. Liu, Phys. Rev. E 80, 066202 (2009); M. Yoshioka, Phys. Rev. E 71, 061914 (2005).

    [4] M. S. Baptista, F. M. Moukam Kakmeni, and C. Grebogi, Phys. Rev. E 82, 036203 (2010); D. Guo, Q. Wang, and M. Perc, Phys. Rev. E 85, 061905 (2012).

    [5] D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).

    [6] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Phys. Rev. Lett. 101, 084103, (2008); D. M. Abrams and S. H. Strogatz, Int. J. of Bifurc. Chaos 16, 37 (2006); E. A. Martens, Chaos 20, 043122 (2010); O. E. Omel'Chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Phys. Rev. E 85, 036210 (2012); M. J. Panaggio and D. M. Abrams, Phys. Rev. E 91, 022909 (2015); Y. Kawamura, Phys. Rev. E 75, 056204 (2007); V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Phys. Rev. E 90, 062913 (2014).

    [7] G. C. Sethia, A. Sen, and G. L. Johnston, Phys. Rev. E 88, 042917 (2013).

    [8] C. R. Laing, Physica D 238, 1569 (2009); A. Pikovsky and M. Rosenblum, Phys. Rev. Lett.101, 264103 (2008).

    [9] J. H. Sheeba, V. K. Chandrasekar, and M. Lakshmanan, Phys. Rev. E 81, 046203 (2010); G. C. Sethia, A. Sen, and F. M. Atay, Phys. Rev. Lett. 100, 144102 (2008).

    [10] E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys. Rev. Lett.104, 044101 (2010).

  • Metrics
    No metrics available
Share - Bookmark