Characterization of twoscale gradient Young measures and application to homogenization

Subject: Mathematics  Analysis of PDEs  74Q05, 49J45, 28A33, 46E27

References
(39)
[1] G. Alberti & S. Mu¨ller: A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), 761825.
[2] G. Allaire: Homogenization and twoscale convergence, SIAM J. Math. Anal. 23 (1992), 14821518.
[3] L. Ambrosio & H. Frid: Multiscale Young measures in almost periodic homogenization and applications, Preprint CVGMT (2005).
[4] O. Anza Hafsa, J.P. Mandallena & G. Michaille: Homogenization of periodic nonconvex integral functionals in terms of Young measures, ESAIM Control Optim. Calc. Var. 12 ( 2006), 3551.
[5] M. Ba´ıa & I. Fonseca: Γconvergence of functionals with periodic integrands via 2scale convergence, Preprint CNA (2005).
[6] M. Ba´ıa & I. Fonseca: The limit behavior of a family of variational multiscale problems, to appear in Indiana. Univ. Math. J..
[7] J.M. Ball: A version of the fundamental theorem for Young measures, PDE's and continuum models for phase transitions, lecture notes physics 334 (1989), 207215.
[8] J.M. Ball & R. James: Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), 1552.
[9] M. Barchiesi: Multiscale homogenization of convex functionals with discontinuous integrand, J. Convex Anal. 14 (2007), 205226.
[10] M. Barchiesi: Loss of polyconvexity by homogenization: a new example, to appear in Calc. Var. Partial Diff. Eq..
 Similar Research Results (1)

Metrics
No metrics available

 Download from


Cite this publication