publication . Part of book or chapter of book . Preprint . Conference object . Book . Article . 2003

Integrals of Motion for Discrete-Time Optimal Control Problems

Delfim F. M. Torres;
Open Access
  • Published: 24 Jan 2003
Abstract
We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.
Subjects
free text keywords: Mathematics - Optimization and Control, Mathematical Physics, 49-99, 39A12, Noether's theorem, symbols.namesake, symbols, Lagrangian, Hamiltonian (control theory), Discrete time control, Discrete time and continuous time, Applied mathematics, Discrete time optimal control, Mathematical analysis, Conservation law, Mathematics, Optimal control
Related Organizations
44 references, page 1 of 3

[1] D. Anderson. Noether's theorem in generalized mechanics. J. Phys. A, 6:299-305, 1973. Zbl 0256.49049 MR 54:6786

[2] A. V. Arutyunov. Optimality conditions. Kluwer Academic Publishers, Dordrecht, 2000. Zbl pre01657516 MR 1845332

[3] J. C. Baez and J. W. Gilliam. An algebraic approach to discrete mechanics. Lett. Math. Phys., 31(3):205-212, 1994. Zbl 0805.58031 MR 95i:58098

[4] D. P. Bertsekas. Dynamic programming and optimal control. I. Athena Scientific, Belmont, MA, 2 edition, 2000.

[5] P. Blanchard and E. Bru¨ning. Variational methods in mathematical physics. Springer-Verlag, Berlin, 1992. Zbl 0756.49023 MR 95b:58049

[6] G. Blankenstein and A. van der Schaft. Optimal control and implicit Hamiltonian systems. In Nonlinear control in the year 2000, Vol. 1 (Paris), pages 185-205. Springer, London, 2001. MR 1806135

[7] J. A. Cadzow. Discrete calculus of variations. Int. J. Control, I. Ser., 11:393-407, 1970. Zbl 0193.07601

[8] J. F. Carin˜ena and H. Figueroa. A geometrical version of Noether's theorem in supermechanics. Rep. Math. Phys., 34(3):277-303, 1994. Zbl 0846.58008 MR 96g:58011

[9] D. S. Djukic. Noether's theorem for optimum control systems. Internat. J. Control (1), 18:667-672, 1973. Zbl 0281.49009 MR 49:5979

[10] I. M. Gelfand and S. V. Fomin. Calculus of variations. Dover Publications, Mineola, NY, 2000. Zbl 0964.49001

[11] J. W. Gilliam. Lagrangian and Symplectic Techniques in Discrete Mechanics. Ph.D. dissertation, University of California Riverside, August 1996.

[12] R. Hilscher and V. Zeidan. Discrete optimal control: the accessory problem and necessary optimality conditions. J. Math. Anal. Appl., 243(2):429-452, 2000. Zbl pre01439372 MR 2001k:49058 [OpenAIRE]

[13] G. Jaroszkiewicz and K. Norton. Principles of discrete time mechanics. I. Particle systems. J. Phys. A, 30(9):3115-3144, 1997. Zbl 0949.70014 MR 98k:81076 [OpenAIRE]

[14] G. Jaroszkiewicz and K. Norton. Principles of discrete time mechanics. II. Classical field theory. J. Phys. A, 30(9):3145-3163, 1997. Zbl 0949.70015 MR 98k:81077 [OpenAIRE]

[15] J. Jost and X. Li-Jost. Calculus of variations. Cambridge University Press, Cambridge, 1998. Zbl 0913.49001 MR 2000m:49002

44 references, page 1 of 3
Any information missing or wrong?Report an Issue