Subdiffusivity of a random walk among a Poisson system of moving traps on ${\mathbb Z}$

Preprint English OPEN
Athreya, Siva; Drewitz, Alexander; Sun, Rongfeng; (2016)

We consider a random walk among a Poisson system of moving traps on ${\mathbb Z}$. In earlier work [DGRS12], the quenched and annealed survival probabilities of this random walk have been investigated. Here we study the path of the random walk conditioned on survival up... View more
  • References (5)

    [DPRZ00] A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni. Thin points for Brownian motion. Ann. Inst. H. Poincar´e Probab. Statist., 36(6):749-774, 2000.

    [S90] [S03] B.C. Rennie and A.J. Dobson. On Stirling numbers of the second kind. Journal of Combinatorial Theory 7(2):116-121, 1969.

    U. Schmock. Convergence of the normalized one-dimensional Wiener sausage path measures to a mixture of Brownian taboo processes. Stochastics Stochastics Rep. 29(2):171-183, 1990.

    S. Sethuraman. Conditional survival distributions of Brownian trajectories in a one dimensional Poissonian environment. Stochastic Process. Appl. 103(2):169-209, 2003.

    A.-S. Sznitman. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.

  • Metrics
    No metrics available
Share - Bookmark