Compactness of the automorphism group of a topological parallelism on real projective 3space: The disconnected case
 Publisher: The Belgian Mathematical Society
 Journal: (issn: 13701444)

Subject: automorphism group  compactness  51H10  51A15  51M30  51H10, 51A15, 51M30  topological parallelism  Mathematics  Geometric Topology

References
(9)
[3] D. Betten and R. Riesinger, Parallelisms of PG(3; R) composed of nonregular spreads, Aequationes Math. 81, 227250, 2011.
[4] D. Betten and R. Riesinger, Clifford parallelism: old and new definitions, and their use, J. Geometry 103, 31  73, 2012.
[5] D. Betten and R. Riesinger, Collineation groups of topological parallelisms, Adv. in Geometry 14, 175  189, 2014.
[6] D. Betten and R. Riesinger, Automorphisms of some topological regular parallelisms of PG(3; R), Results in Math. 66, 291326, 2014.
[7] D. Djocovi´c: The union of compact subgroups of a connected locally compact group, Math. Zeitschr. 158, 99  105, 1978.
[8] R. Ku¨hne and R. Lo¨wen, Topological projective spaces, Abh. Math. Sem. Univ. Hamb. 62, 1  9, 1992.
[9] R. Lo¨wen, A characterization of Clifford parallelism by automorphisms, arXiv:1702.03328; Innovations in Incidence Geometry, to appear.
[10] H. Salzmann, D. Betten, T. Grundho¨fer, H. H¨ahl, R. Lo¨wen, M. Stroppel, Compact projective planes, Berlin etc.: de Gruyter 1995.
Rainer Lo¨wen, Institut fu¨r Analysis und Algebra, Technische Universit¨at Braunschweig, Universit¨atsplatz 2, D 38106 Braunschweig, Germany

Similar Research Results
(6)

Metrics
No metrics available

 Download from



Cite this publication