publication . Preprint . 2018

Bosonic dark matter halos: excited states and relaxation in the potential of the ground state

Vicens, Jorge; Salvado, Jordi; Miralda-Escudé, Jordi;
Open Access English
  • Published: 28 Feb 2018
An ultra-light axion field with mass $\sim 10^{-22}\ {\rm eV}$, also known as wave or fuzzy dark matter, has been proposed as a component of the dark matter in the Universe. We study the evolution of the axion dark matter distribution in the central region of a halo, assuming the mass is dominated by this axion field, and that gravity is the only important interaction. We calculate the excited axion states in the spherical gravitational potential generated by the self-gravitating ground-state, also known as soliton. These excited states are similar to the states of the hydrogen atom with quantum numbers $(n,l,m)$, here designating oscillation modes of a classica...
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies
Related Organizations
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
Download from
41 references, page 1 of 3

[1] Arata Aoki and Jiro Soda. Detecting ultralight axion dark matter wind with laser interferometers. Int. J. Mod. Phys., D26(07):1750063, 2016.

[2] J. N. Bahcall and R. A. Wolf. Star distribution around a massive black hole in a globular cluster. Astrophys. J., 209:214{232, October 1976. [OpenAIRE]

[3] J. N. Bahcall and R. A. Wolf. The star distribution around a massive black hole in a globular cluster. II Unequal star masses. Astrophys. J., 216:883{907, September 1977. [OpenAIRE]

[4] J. Barranco, A. Bernal, J. C. Degollado, A. Diez-Tejedor, M. Megevand, M. Alcubierre, D. Nun~ez, and O. Sarbach. Schwarzschild Black Holes can Wear Scalar Wigs. Physical Review Letters, 109(8):081102, August 2012.

[5] Julien Baur, Nathalie Palanque-Delabrouille, Christophe Yeche, Christophe Magneville, and Matteo Viel. Lyman-alpha Forests cool Warm Dark Matter. JCAP, 1608(08):012, 2016.

[6] David H. Bernstein, Eldar Giladi, and Kingsley R. W. Jones. Eigenstates of the gravitational schrodinger equation. Modern Physics Letters A, 13(29):2327{2336, 1998.

[7] J. Binney and S. Tremaine. Galactic dynamics. Princeton, NJ, Princeton University Press, 747 p., 1987.

[8] Diego Blas, Diana Lopez Nacir, and Sergey Sibiryakov. Ultralight Dark Matter Resonates with Binary Pulsars. Phys. Rev. Lett., 118(26):261102, 2017.

[9] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees. Formation of galaxies and large-scale structure with cold dark matter. Nature, 311:517{525, October 1984.

[10] Paul Bode, Jeremiah P. Ostriker, and Neil Turok. Halo formation in warm dark matter models. Astrophys. J., 556:93{107, 2001.

[11] Vedran Brdar, Joachim Kopp, Jia Liu, Pascal Prass, and Xiao-Ping Wang. Fuzzy dark matter and nonstandard neutrino interactions. Phys. Rev., D97(4):043001, 2018. [OpenAIRE]

[12] J. S. Bullock and M. Boylan-Kolchin. Small-Scale Challenges to the CDM Paradigm. Ann.Rev.Astron.Astrophys, 55:343{ 387, August 2017.

[13] Pedro Colin, Vladimir Avila-Reese, and Octavio Valenzuela. Substructure and halo density pro les in a warm dark matter cosmology. Astrophys. J., 542:622{630, 2000.

[14] Ivan de Martino, Tom Broadhurst, S. H. Henry Tye, Tzihong Chiueh, Hsi-Yu Schive, and Ruth Lazkoz. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays. Galaxies, 6(1):10, 2018.

[15] P. S. Bhupal Dev, Manfred Lindner, and Sebastian Ohmer. Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter. Phys. Lett., B773:219{224, 2017. [OpenAIRE]

41 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue