publication . Article . Other literature type . Preprint . 1994

Aging and Domain Growth in the Two-Dimensional Ising Spin Glass Model

Rieger, H; Steckemetz, B; Schreckenberg, M;
Open Access
  • Published: 20 Aug 1994 Journal: Europhysics Letters (EPL), volume 27, pages 485-490 (issn: 0295-5075, eissn: 1286-4854, Copyright policy)
  • Publisher: IOP Publishing
Interrupted aging in the two-dimensional Ising spin glass model with Gaussian couplings is established and investigated via extensive Monte-Carlo simulations. The spin autocorrelation function scales with $t/\tau(t_w)$, where $t_w$ is the waiting time and $\tau$ is equal to $t_w$ for waiting times smaller than the equilibration time $\tau_{\rm eq}$. The spatial correlations scale with $r/\xi(t_w)$, where the correlation length $\xi$ gives information about the averaged domain size in the system. Our results are better compatible with an algebraic growth law for $\xi(t_w)$, although it can also nicely be fitted to $(\log t_w)^{1/\psi}$ with $\psi\approx0.63$.
arXiv: Condensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Statistical MechanicsCondensed Matter::Soft Condensed Matter
free text keywords: General Physics and Astronomy, Monte Carlo method, Quantum mechanics, Physics, Autocorrelation, Condensed matter physics, Spin-½, Spin glass, Coupling, Correlation function (statistical mechanics), Gaussian, symbols.namesake, symbols, Ising model, Condensed Matter, High Energy Physics - Lattice
25 references, page 1 of 2

[1] For a review of spin glasses see K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

[2] For an overview see e.g. M. Ledermann, R. Orbach, J. M. Hammann, M. Ocio and E. Vincent, Phys. Rev. B 44, 7403 (1991); E. Vincent, J. Hammann and M. Ocio, chapter 7 (p. 207-236) of ”Recent Progress in Random Magnets”, D. H. Ryan editor, World Scient., Singapore 1992.

[3] K. Biljakovic, J. C. Lasjaunias, P. Monceau and F. Levy, Phys. Rev. Lett. 62, 1512 (1989) and ibid. 67, 1902 (1991).

[4] C. Rossel, Y. Maeno and I. Morgenstern, Phys. Rev. Lett. 62, 681 (1989).

[5] J. Mattson, C. Djurberg, P. Nordblad, L Hoines, R. Stubi and J. A. Cowen, Phys. Rev. B 47, 14626 (1993).

[6] A. Schins, A. F. M. Arts and H. W. de Wijn, Phys. Rev. Lett. 70, 2340 (1993); A. Schins, E. M. Dons, A. F. M. Arts, H. W. de Wijn, E. Vincent, L. Leylekian and J. Hammann, Phys. Rev. B 48, 16524 (1993).

[7] D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373 (1988) and ibid. 38, 386 (1988).

[8] G. J. M. Koper and H. J. Hilhorst, J. Phys. France 49, 429 (1988).

[9] C. Dekker, A. F. M. Arts, H. W. de Wijn, A. J. van Duyneveldt and J. A. Mydosh, Phys. Rev. Lett. 61, 1780 (1988); Phys. Rev. B 48, 16524 (1993).

[10] R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988).

[11] B. Steckemetz, H. Rieger and M. Schreckenberg, to be published.

[12] J. P. Bouchaud, J. Physique I 2, 1705 (1992); J. P. Bouchaud, E. Vincent and J. Hammann, J. Physique I 4, 139 (1994).

[13] H. Rieger, J. Phys. A 26, L615 (1993); and to be published.

[14] L. Cugliandolo, J. Kurchan and F. Ritort, Phys. Rev. B 49, 6331 (1994).

[15] M. Ocio, M. Alba and J. Hamman, J. Physique Lett. 46, L1101 (1985). M. Alba, M. Ocio and J. Hamman, Europhys. Lett. 2, 45 (1986).

25 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue