On a Theorem of Scott and Swarup

Preprint English OPEN
Mitra, Mahan;
  • Subject: 20F32, 57M50 | Mathematics - Geometric Topology
    arxiv: Mathematics::Geometric Topology | High Energy Physics::Phenomenology | Mathematics::Group Theory

Let $1 \rightarrow H \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1$ be an exact sequence of hyperbolic groups induced by a fully irreducible automorphism $\phi$ of the free group $H$. Let $H_1 (\subset H)$ be a finitely generated distorted subgroup of $G$. Then $H_... View more
  • References (18)
    18 references, page 1 of 2

    [1] M. Bestvina and M. Feighn. A Combination theorem for Negatively Curved Groups. J. Diff. Geom., vol 35, pages 85-101, 1992.

    [2] M. Bestvina, M. Feighn, and M. Handel. The Tits' alternative for Out(Fn) I: Dynamics of exponentially growing automorphisms. preprint, http://arxiv.org/pdf/math/9712217v1.pdf.

    [3] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees and irreducible automorphisms of free groups. GAFA vol.7 No. 2, pages 215-244, 1997.

    [4] M. Bestvina and M. Handel. Train tracks and automorpfisms of free groups. Ann. Math. 135, pages 1-51, 1992.

    [5] J. Cannon and W. P. Thurston. Group Invariant Peano Curves. preprint.

    [6] B. Farb. The extrinsic geometry of subgroups and the generalized word problem. Proc. LMS (3) 68, pages 577-593, 1994.

    [7] M. Gromov. Asymptotic Invariants of Infinite Groups. in Geometric Group Theory,vol.2; Lond. Math. Soc. Lecture Notes 182 (1993), Cambridge University Press.

    [8] M. Gromov. Hyperbolic Groups. in Essays in Group Theory, ed. Gersten, MSRI Publ.,vol.8, Springer Verlag,1985, pages 75-263.

    [9] I. Kapovich and M. Lustig. Invariant laminations for irreducible automorphisms of free groups. preprint, arXiv:1104.1265.

    [10] I. Kapovich and M. Lustig. On the fibers of the Cannon-Thurston map for free-by-cyclic groups. preprint, arXiv:1207.3494.

  • Similar Research Results (3)
  • Metrics
Share - Bookmark