publication . Preprint . Article . 2012

On a Theorem of Scott and Swarup

Mahan Mitra;
Open Access English
  • Published: 19 Sep 2012
Abstract
Comment: 9 pgs no figs. This is a corrected version of an old paper
Subjects
arXiv: High Energy Physics::PhenomenologyMathematics::Geometric TopologyMathematics::Group Theory
free text keywords: Mathematics - Geometric Topology, 20F32, 57M50, Automorphism, Finitely-generated abelian group, Conjugate, Combinatorics, Free group, Exact sequence, Mathematics, Subgroup, Conjugacy class
18 references, page 1 of 2

[1] M. Bestvina and M. Feighn. A Combination theorem for Negatively Curved Groups. J. Diff. Geom., vol 35, pages 85-101, 1992. [OpenAIRE]

[2] M. Bestvina, M. Feighn, and M. Handel. The Tits' alternative for Out(Fn) I: Dynamics of exponentially growing automorphisms. preprint, http://arxiv.org/pdf/math/9712217v1.pdf.

[3] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees and irreducible automorphisms of free groups. GAFA vol.7 No. 2, pages 215-244, 1997. [OpenAIRE]

[4] M. Bestvina and M. Handel. Train tracks and automorpfisms of free groups. Ann. Math. 135, pages 1-51, 1992. [OpenAIRE]

[5] J. Cannon and W. P. Thurston. Group Invariant Peano Curves. preprint.

[6] B. Farb. The extrinsic geometry of subgroups and the generalized word problem. Proc. LMS (3) 68, pages 577-593, 1994.

[7] M. Gromov. Asymptotic Invariants of Infinite Groups. in Geometric Group Theory,vol.2; Lond. Math. Soc. Lecture Notes 182 (1993), Cambridge University Press.

[8] M. Gromov. Hyperbolic Groups. in Essays in Group Theory, ed. Gersten, MSRI Publ.,vol.8, Springer Verlag,1985, pages 75-263.

[9] I. Kapovich and M. Lustig. Invariant laminations for irreducible automorphisms of free groups. preprint, arXiv:1104.1265.

[10] I. Kapovich and M. Lustig. On the fibers of the Cannon-Thurston map for free-by-cyclic groups. preprint, arXiv:1207.3494.

[11] M. Mitra. Ending Laminations for Hyperbolic Group Extensions. GAFA vol.7 No. 2, pages 379-402, 1997.

[12] M. Mitra. Maps on boundaries of hyperbolicmetric spaces. PhD Thesis, U.C.Berkeley, 1997.

[13] M. Mitra. Cannon-Thurston Maps for Hyperbolic Group Extensions. Topology, 1998.

[14] M. Mitra. On a Theorem of Scott and Swarup. Proc. Amer. Math. Soc. 127 (6), pages 1625-1631, 1999.

[15] P. Scott. Subgroups of surface groups are almost geometric. Journal L.M.S. 17, pages 555-65, 1978.

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2012

On a Theorem of Scott and Swarup

Mahan Mitra;