Deep Neural Network for Learning to Rank Query-Text Pairs

Preprint English OPEN
Song, Baoyang;
(2018)
  • Subject: Computer Science - Information Retrieval

This paper considers the problem of document ranking in information retrieval systems by Learning to Rank. We propose ConvRankNet combining a Siamese Convolutional Neural Network encoder and the RankNet ranking model which could be trained in an end-to-end fashion. We p... View more
  • References (17)
    17 references, page 1 of 2

    Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schu¨tze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719, 9780521865715.

    Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. ISBN 978-3-642-14266-6.

    Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. O'Reilly Media, Inc., 1st edition, 2015. ISBN 1449358543, 9781449358549.

    Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02, pages 133-142, New York, NY, USA, 2002. ACM. ISBN 1-58113-567-X. doi: 10.1145/775047.775067. URL http://doi.acm.org/10.1145/775047.775067.

    Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In Proceedings of the 22Nd International Conference on Machine Learning, ICML '05, pages 89-96, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5. doi: 10.1145/1102351.1102363. URL http://doi.acm.org/10.1145/1102351.1102363.

    Christopher J. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with nonsmooth cost functions. In P. B. Scho¨lkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 193-200. MIT Press, 2007. URL http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf.

    Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART: An overview. Technical report, Microsoft Research, 2010. URL http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf.

    Martin Szummer and Emine Yilmaz. Semi-supervised learning to rank with preference regularization. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM '11, pages 269-278, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0717-8. doi: 10.1145/ 2063576.2063620. URL http://doi.acm.org/10.1145/2063576.2063620.

    Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882, 2014. URL http://arxiv.org/abs/1408.5882.

    Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '15, pages 373-382, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3621-5. doi: 10.1145/2766462.2767738. URL http://doi.acm.org/10.1145/2766462.2767738.

  • Related Research Results (1)
  • Related Organizations (3)
  • Bioentities (1)
    2for Protein Data Bank
  • Metrics
Share - Bookmark