publication . Article . Preprint . 2014

The finite Fourier transform of classical polynomials

Open Access English
  • Published: 04 Dec 2014
  • Publisher: HAL CCSD
<jats:title>Abstract</jats:title><jats:p>The finite Fourier transform of a family of orthogonal polynomials is the usual transform of these polynomials extended by<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="" mime-subtype="gif" xlink:type="simple" xlink:href="S1446788714000500_inline1" /><jats:tex-math>$0$</jats:tex-math></jats:alternatives></jats:inline-formula>outside their natural domain of orthogonality. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.</jats:p>
free text keywords: [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], Mathematics - Functional Analysis, Mathematics - Classical Analysis and ODEs, 42A16, 33C45, General Mathematics, Orthogonality, Orthogonal polynomials, Legendre polynomials, Pure mathematics, Polynomial, Finite fourier transform, Mathematics, Expression (mathematics), Chebyshev filter, Mathematical analysis
Related Organizations

[1] A. Erd´elyi. Tables of Integral Transforms, volume I. McGraw-Hill, New York, 1st edition, 1954.

[2] A. S. Fokas, A. Iserles, and S. A. Smitherman. The unified method in polygonal domains via the explicit Fourier transform of Legendre polynomials. In A. S. Fokas and B. Pelloni, editors, Unified Transforms, page ?? SIAM, 2014.

[3] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.

[4] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison Wesley, Boston, 2nd edition, 1994.

[5] N. Greene. Formulas for the Fourier series of orthogonal polynomials in terms of special functions. International Journal of Mathematical Models and Methods in Applied Sciences, 2:317-320, 2008.

[6] G. H. Hardy and W. W. Rogosinski. Fourier Series. Cambridge University Press, 2nd edition, 1950.

[7] I. Nemes, M. Petkovsek, H. Wilf, and D. Zeilberger. How to do MONTHLY problems with your computer. Amer. Math. Monthly, 104:505-519, 1997.

[8] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.

[9] M. Petkovˇsek, H. Wilf, and D. Zeilberger. A=B. A. K. Peters, Ltd., 1st edition, 1996.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue