publication . Article . Preprint . Other literature type . 2013

quantum speed limits in open system dynamics

del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.;
Open Access
  • Published: 30 Jan 2013 Journal: Physical Review Letters, volume 110 (issn: 0031-9007, eissn: 1079-7114, Copyright policy)
  • Publisher: American Physical Society (APS)
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging ...
free text keywords: General Physics and Astronomy, Quantum operation, Quantum process, Quantum network, Quantum error correction, Physics, Quantum algorithm, Quantum dynamics, Classical mechanics, Quantum capacity, Open quantum system, Quantum Physics, Mathematical Physics
Related Organizations
35 references, page 1 of 3

[1] For a recent review, see V. Giovanetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Phot. 5, 222-229 (2011).

[2] S. Lloyd, Nature 406, 1047 (2000); S. Lloyd, Phys. Rev. Lett. 88, 237901 (2002); V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 67, 052109 (2003).

[3] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501 (2009).

[4] L. S. Schulman, Lect. Notes Phys. 734, 107 (2008).

[5] L. Mandelstam and I. Tamm, J. Phys (USSR) 9, 249 (1945). For the subtleties associated with time-energy uncerttainty relations, see P. Busch, Lect. Notes Phys. 734, 73 (2008).

[6] G. N. Fleming, Nuov. Cim. 16 A, 232 (1973).

[7] L. Vaidman, Am. J. Phys. 60, 182 (1992).

[8] J. Uffink, Am. J. Phys. 61, 935 (1993).

[9] D. C. Brody, J. Phys. A: Math. Gen. 36, 5587 (2003).

[10] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Phys. Rev. Lett. 98, 040403 (2007).

[11] A. Mostafazadeh, Phys. Rev. Lett. 99, 130502 (2007).

[12] N. Margolus and L. B. Levitin, Phys.D 120, 188 (1998).

[13] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).

[14] H. P. Breuer, F. Petruccione: The Theory of Open Quantum Systems, (Oxford University Press, New York 2002).

[15] A. Rivas and S. F. Huelga: Open Quantum Systems. An Introduction, (Springer, Heidelberg, 2011).

35 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue