## Pseudo-rotations vs. Rotations

*Ginzburg, Viktor L.*;

*Gurel, Basak Z.*;

- Subject: Mathematics - Symplectic Geometry | 53D40, 37J10, 37J45 | Mathematics - Dynamical Systems

- References (34)
[AK] D.V. Anosov, A.B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, (in Russian), Trudy Moskov. Mat. Obˇsˇc., 23 (1970), 3-36.

[Br15a] B. Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves, Ann. of Math. (2), 181 (2015), 1033-1086.

[Br15b] B. Bramham, Pseudo-rotations with sufficiently Liouvillean rotation number are C0- rigid, Invent. Math., 199 (2015), 561-580.

[BH] B. Bramham, H. Hofer, First steps towards a symplectic dynamics, Surv. Differ. Geom., 17 (2012), 127-178.

[CGG] M. Chance, V.L. Ginzburg, B.Z. Gu¨rel, Action-index relations for perfect Hamiltonian diffeomorphisms, J. Sympl. Geom., 11 (2013), 449-474.

[CKRTZ] B. Collier, E. Kerman, B. Reiniger, B. Turmunkh, A. Zimmer A symplectic proof of a theorem of Franks, Compos. Math., 148 (2012), 1969-1984.

[FK] B. Fayad, A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520.

[Fl] A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.

[Fo] B. Fortune, A symplectic fixed point theorem for CPn, Invent. Math., 81 (1985), 29-46.

[FW] B. Fortune, A. Weinstein, A symplectic fixed point theorem for complex projective spaces, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 128-130.

- Similar Research Results (8)
- Metrics No metrics available

- Download from

- Funded by

- Cite this publication