publication . Preprint . 2010

Tree-Structured Stick Breaking Processes for Hierarchical Data

Adams, Ryan Prescott; Ghahramani, Zoubin; Jordan, Michael I.;
Open Access English
  • Published: 05 Jun 2010
Abstract
Comment: 16 pages, 5 figures, submitted
Subjects
free text keywords: Statistics - Methodology, Statistics - Machine Learning
Download from
29 references, page 1 of 2

E. Bart, I. Porteous, P. Perona, and M. Welling. Unsupervised learning of visual taxonomies. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. [OpenAIRE]

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993{1022, 2003.

D. M. Blei, T. L. Gri ths, and M. I. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1{30, 2010.

H. Daume III. Bayesian multitask learning with latent hierarchies. In Proceedings of the 25th Conference on Uncertainty in Arti cial Intelligence, 2009.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216{222, 1987.

T. L. Gri ths and M. Steyvers. Finding scienti c topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1):5228{5235, 2004.

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In Proceedings of the 22nd International Conference on Machine Learning, 2005. [OpenAIRE]

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161{173, March 2001. [OpenAIRE]

C. Kemp, T. L. Gri ths, S. Stromsten, and J. B. Tenenbaum. Semi-supervised learning with trees. In Advances in Neural Information Processing Systems 16. 2004.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Department of Computer Science, University of Toronto, 2009.

S. N. MacEachern. Dependent nonparametric processes. In Proceedings of the Section on Bayesian Statistical Science, 1999.

S. N. MacEachern, A. Kottas, and A. E. Gelfand. Spatial nonparametric Bayesian models. Technical Report 01-10, Institute of Statistics and Decision Sciences, Duke University, 2001.

R. D. Mauldin, W. D. Sudderth, and S. C. Williams. Polya trees and random distributions. The Annals of Statistics, 20(3):1203{1221, September 1992.

E. Meeds, D. A. Ross, R. S. Zemel, and S. T. Roweis. Learning stick- gure models using nonparametric Bayesian priors over trees. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. [OpenAIRE]

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

29 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue