Two polynomial representations of experimental design

Subject: Statistics  Methodology  Statistics  Computationacm: ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION

References
(20)
20 references, page 1 of 2
 1
 2
Char, B., Geddes, K., Gonnet, G., Leong, B., Monogan, M., Watt, S., 1991. MAPLE V Library Reference Manual. SpringerVerlag, New York.
Cheng, S.W., Ye, K. Q., 2004. Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. The Annals of Statistics 32 (5), 21682185.
CoCoATeam, 2005. CoCoA: a system for doing http://cocoa.dima.unige.it.
Draper, N. R., Pukelsheim, F., 1998. Mixture models based on homogeneous polynomials. J. Statist. Plann. Inference 71 (12), 303311.
Fontana, R., Pistone, G., Rogantin, M.P., 1997. Algebraic analysis and generation of twolevels designs. Statistica Applicata 9 (1), 1529.
Fontana, R., Pistone, G., Rogantin, M. P., 2000. Classification of twolevel factorial fractions. J. Statist. Plann. Inference 87 (1), 149172.
Holliday, T., Pistone, G., Riccomagno, E., Wynn, H. P., 1999. The application of computational algebraic geometry to the analysis of designed experiments: a case study. Comput. Statist. 14 (2), 213231.
Kreuzer, M., Robbiano, L., 2000. Computational Commutative Algebra 1. Springer, BerlinHeidelberg.
Kreuzer, M., Robbiano, L., 2005. Computational Commutative Algebra 2. Springer, BerlinHeidelberg.
MaruriAguilar, H., Notari, R., Riccomagno, E., 2007. On the description and identifiability analysis of mixture designs. Statistica Sinica (accepted for publication).

Metrics
5views in OpenAIRE0views in local repository0downloads in local repository

 Download from


Cite this publication