VideoStory Embeddings Recognize Events when Examples are Scarce

Preprint English OPEN
Habibian, Amirhossein ; Mensink, Thomas ; Snoek, Cees G. M. (2015)
  • Subject: Computer Science - Computer Vision and Pattern Recognition | Computer Science - Multimedia

This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, w... View more
  • References (82)
    82 references, page 1 of 9

    [1] CMU sphinx open source toolkit for speech recognition. http:// cmusphinx.sourceforge.net/. Accessed: 2015-08-03. 4.2

    [2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In CVPR, 2013. 2.2

    [3] T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, 2010. 1, 2.1, 3.1, 5.1.1

    [4] S. Bhattacharya, M. M. Kalayeh, R. Sukthankar, and M. Shah. Recognition of complex events: Exploiting temporal dynamics between underlying concepts. In CVPR, 2014. 1

    [5] D. M. Blei and M. I. Jordan. Modeling annotated data. In SIGIR, 2003. 2.2

    [6] L. Bottou. Large-scale machine learning with stochastic gradient descent. In ICCS, 2010. 3.1

    [7] X. Chang, Y. Yang, A. G. Hauptmann, E. P. Xing, and Y.-L. Yu. Semantic concept discovery for large-scale zero-shot event detection. In IJCAI, 2015. 2.3, 5.4, 6

    [8] X. Chang, Y.-L. Yu, Y. Yang, and A. G. Hauptmann. Searching persuasively: Joint event detection and evidence recounting with limited supervision. In MM, 2015. 5.4, 6

    [9] J. Chen, Y. Cui, G. Ye, D. Liu, and S.-F. Chang. Event-driven semantic concept discovery by exploiting weakly tagged internet images. In ICMR, 2014. 1, 2.1, 2.3, 5.1.1

    [10] J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. Lanckriet, R. Levy, and N. Vasconcelos. On the role of correlation and abstraction in cross-modal multimedia retrieval. IEEE TPAMI, 2014. 2.2, 5.1.2

  • Metrics
    No metrics available
Share - Bookmark