Co-Higgs bundles on P^1

Preprint English OPEN
Rayan, Steven;
  • Subject: 14D20, 14H60, 14D22 | Mathematics - Algebraic Geometry | Mathematics - Differential Geometry
    arxiv: Mathematics::Algebraic Geometry | High Energy Physics::Phenomenology | Mathematics::Symplectic Geometry

Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P^1, we find necessary and sufficient conditions on its Grothendieck splitting for it to ad... View more
  • References (11)
    11 references, page 1 of 2

    [1] Beauville, A., Narasimhan, M. S., and Ramanan, S. Spectral curves and the generalized theta divisor. J. Reine Angew. Math. 398 (1989), 169{179.

    [2] Bradlow, S. B., Garc a-Prada, O., and Gothen, P. B. What is: : : a Higgs bundle? Notices Amer. Math. Soc. 54, 8 (2007), 980{981.

    [3] Donagi, R., and Markman, E. Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles. In Integrable Systems and Quantum Groups (Montecatini Terme, 1993), vol. 1620 of Lecture Notes in Math. Springer, Berlin, 1996, pp. 1{119.

    [4] Gualtieri, M. Branes on Poisson varieties. In The Many Facets of Geometry: A Tribute to Nigel Hitchin. OUP, Oxford, 2010, pp. 368{394.

    [5] Hitchin, N. J. The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55, 1 (1987), 59{126.

    [6] Hitchin, N. J. Generalized holomorphic bundles and the B- eld action. arXiv:math/1010.0207v1 [math.DG], 2010.

    [7] Hitchin, N. J. Lectures on generalized geometry. arXiv:math/1008.0973v1 [math.DG], 2010.

    [8] Narasimhan, M., and Seshadri, C. Stable and unitary vector bundles on a compact Riemann surface. Annals of Maths. 82, 1-3 (1965), 540{567.

    [9] Nitsure, N. Moduli space of semistable pairs on a curve. Proc. London Math. Soc. (3) 62, 2 (1991), 275{300.

    [10] Simpson, C. T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1, 4 (1988), 867{918.

  • Similar Research Results (3)
  • Metrics
Share - Bookmark