Landau-Ginzburg Orbifolds, Mirror Symmetry and the Elliptic Genus

Preprint English OPEN
Berglund, P. ; Henningson, M. (1994)

We compute the elliptic genus for arbitrary two dimensional $N=2$ Landau-Ginzburg orbifolds. This is used to search for possible mirror pairs of such models. We show that if two Landau-Ginzburg models are conjugate to each other in a certain sense, then to every orbifold of the first theory corresponds an orbifold of the second theory with the same elliptic genus (up to a sign) and with the roles of the chiral and anti-chiral rings interchanged. These orbifolds thus constitute a possible mirror pair. Furthermore, new pairs of conjugate models may be obtained by taking the product of old ones. We also give a sufficient (and possibly necessary) condition for two models to be conjugate, and show that it is satisfied by the mirror pairs proposed by one of the authors and~H\"ubsch.
  • References (30)
    30 references, page 1 of 3

    [1] For a review and references, see L. Dixon, in Superstrings, Unified Theories and Cosmology 1987, eds. G. Furlan et al. (World Scientific, Singapore, 1988).

    [2] P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46.

    [3] Y. Kazama and H. Suzuki, Nucl. Phys. B321 (1989) 232; Y.Kazama and H. Suzuki, Phys. Lett. 216B (1989) 112.

    [4] C. Vafa and N.P. Warner, Phys. Lett. 218B (1989) 377; E.Martinec, Phys. Lett. B217 (1989) 431.

    [5] L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1985) 678; L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. B274 (1986) 285.

    [6] W. Lerche, C. Vafa and N.P. Warner, Nucl. Phys. B324 (1989) 427.

    [7] A. Schellekens and N. Warner, Phys. Lett. 177B (1986) 317; A. Schellekens and N. Warner, Phys. Lett. 181B (1986) 339; K. Pilch, A. Schellekens and N. Warner, Nucl. Phys. B287 (1987) 317.

    [8] E. Witten, Comm. Math. Phys. 109 (1987) 525 ; E. Witten, in Elliptic Curves and Modular Forms in Algebraic Topology ed. P. Landwebber, (Springer Verlag 1988).

    [9] E. Witten, “On the Landau-Ginzburg Description of N = 2 minimal models”, IAS preprint IASSNS-HEP-93/10.

    [10] P. Di Francesco and S. Yankielowicz, Nucl. Phys. B409 (1993) 186.

  • Metrics
    No metrics available
Share - Bookmark