Automata and Quantum Computing

Preprint English OPEN
Ambainis, Andris ; Yakaryılmaz, Abuzer (2015)
  • Subject: Computer Science - Computational Complexity | Computer Science - Formal Languages and Automata Theory | 68Q10, 68Q12, 68Q15, 68Q19, 68Q45 | Quantum Physics
    acm: TheoryofComputation_GENERAL | TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES | TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES | ComputerSystemsOrganization_MISCELLANEOUS
    arxiv: Computer Science::Formal Languages and Automata Theory

Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers. Keywords: quantum finite automata, probabilistic finite automata, nondeterminism, bounded error, unbounded error, state complexity, decidability and undecidability, computational complexity
  • References (114)
    114 references, page 1 of 12

    [1] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proceedings of the Royal Society A, 461(2063):3473-3482, 2005. 25

    [2] S. Aaronson and A. Drucker. Advice coins for classical and quantum computation. In ICALP (1), volume 6755 of LNCS, pages 61-72, 2011. (arXiv:1101.5355). 26

    [3] L. M. Adleman, J. DeMarrais, and M.-D. A. Huang. Quantum computability. SIAM Journal on Computing, 26(5):1524-1540, 1997. 15

    [4] M. Amano and K. Iwama. Undecidability on quantum finite automata. In STOC, pages 368-375. ACM, 1999. 23

    [5] A. Ambainis, M. Beaudry, M. Golovkins, A. K¸ikusts, M. Mercer, and D. The´rien. Algebraic results on quantum automata. Theory of Computing Systems, 39(1):165-188, 2006. 9, 14

    [6] A. Ambainis, R. Bonner, R. Freivalds, and A. K¸ ikusts. Probabilities to accept languages by quantum finite automata. In COCOON, volume 1627 of LNCS, pages 174-183, 1999. (arXiv:quant-ph/9904066). 14

    [7] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and generalizations. In FOCS, pages 332-341. IEEE, 1998. (arXiv:quant-ph/9802062). 11, 12, 14, 17, 26

    [8] A. Ambainis, A. K¸ikusts, and M. Valdats. On the class of languages recognizable by 1-way quantum finite automata. In STACS, volume 2010 of LNCS, pages 75-86, 2001. 14

    [9] A. Ambainis and N. Nahimovs. Improved constructions of quantum automata. Theoretical Computer Science, 410(20):1916-1922, 2009. 9, 12, 13

    [10] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum coding and quantum finite automata. Journal of the ACM, 49(4):496-511, 2002. 13

  • Similar Research Results (2)
  • Bioentities (1)
    1qfa Protein Data Bank
  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository
Share - Bookmark