publication . Conference object . Preprint . 1996

Weak C* Hopf symmetry

Karl-Henning Rehren;
Open Access
  • Published: 07 Nov 1996
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
arXiv: Mathematics::Quantum Algebra
free text keywords: Mathematics - Quantum Algebra, High Energy Physics - Theory

[1] K.-H. Rehren: “Quantum symmetry associated with braid group statistics”, in: Quantum Groups, Proceedings of the ASI Workshop, Clausthal 1989, eds. H.-D. Doebner et al., Lecture Notes in Physics 370, pp. 318-339, (Springer, 1990).

[2] K.-H. Rehren: “Quantum symmetry associated with braid group statistics. II”, in: Quantum Symmetries, Proceedings of the ASI Workshop, Clausthal 1991, eds. H.-D. Doebner et al., pp. 14-23 (World Scientific, Singapore, 1993).

[3] K. Fredenhagen, K.-H. Rehren, B. Schroer: “Superselection sectors with braid group statistics and exchange algebras. I+II”, Commun. Math. Phys. 125 (1989) 201-226 and Rev. Math. Phys. Special Issue (1992) 113-157. [OpenAIRE]

[4] G. Bo¨hm, K. Szlachanyi: “A coassociative C*-quantum group with non-integral dimensions”, preprint Budapest 1996, q-alg 9509008, to appear in Lett. Math. Phys.

[5] F. Nill, K. Szlachanyi, H.-W. Wiesbrock: “Weak Hopf algebras and reducible Jones inclusions of depth 2”, preprint in preparation, Berlin 1996; F. Nill: unpublished manuscript (1996).

[6] T. Yamanouchi: “Duality for generalized Kac algebras and a characterization of finite groupoid algebras”, Journ. Alg. 163 (1994) 9-50; T. Hayashi: “Compact quantum groups of face type”, Publ. RIMS 32 (1996) 351-369.

[7] V.G. Drinfel'd: “Quantum groups”, in: Proceedings of the Intern. Congr. of Mathematicians, Berkeley 1986, ed. A. Gleason, pp. 798-820 (Berkeley, 1987).

[8] V. Schomerus: “Construction of field algebras with quantum symmetry from local observables”, Commun. Math. Phys. 169 (1995) 193-236. [OpenAIRE]

[9] A. Ocneanu: “Quantized groups, string algebras, and Galois theory for algebras”, in: Operator Algebras and Applications, Vol. 2, eds. D.E. Evans et al., London Math. Soc. Lect. Notes 135, pp. 119-172 (Cambridge, 1988).

[10] R. Longo: “Index of subfactors and statistics of quantum fields. I+II”, Commun. Math. Phys. 126 (1989) 217-247 and 130 (1990) 285-309. [OpenAIRE]

[11] R. Longo: “A duality for Hopf algebras and for subfactors. I”, Commun. Math. Phys. 159 (1994) 133-150. [OpenAIRE]

[12] R. Longo, K.-H. Rehren: “Nets of subfactors”, Rev. Math. Phys. 7 (1995) 567-597.

[13] S. Doplicher, R. Haag, J.E. Roberts: “Local observables and particle statistics. I+II”, Commun. Math. Phys. 23 (1971) 199-230 and 35 (1974) 49-85. [OpenAIRE]

[14] S. Doplicher, J.E. Roberts: “Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics”, Commun. Math. Phys. 131 (1990) 51-107. [OpenAIRE]

[15] F. Nill, K.-H. Rehren: unpublished. F. Nill has already in 1994 considered the weak Hopf symmetry associated with σ⊕.

Any information missing or wrong?Report an Issue