Weak C* Hopf Symmetry

Preprint English OPEN
Rehren, K. -H.;
(1996)
  • Subject: High Energy Physics - Theory | Mathematics - Quantum Algebra
    arxiv: Mathematics::Quantum Algebra

Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discuss... View more
  • References (15)
    15 references, page 1 of 2

    [1] K.-H. Rehren: “Quantum symmetry associated with braid group statistics”, in: Quantum Groups, Proceedings of the ASI Workshop, Clausthal 1989, eds. H.-D. Doebner et al., Lecture Notes in Physics 370, pp. 318-339, (Springer, 1990).

    [2] K.-H. Rehren: “Quantum symmetry associated with braid group statistics. II”, in: Quantum Symmetries, Proceedings of the ASI Workshop, Clausthal 1991, eds. H.-D. Doebner et al., pp. 14-23 (World Scientific, Singapore, 1993).

    [3] K. Fredenhagen, K.-H. Rehren, B. Schroer: “Superselection sectors with braid group statistics and exchange algebras. I+II”, Commun. Math. Phys. 125 (1989) 201-226 and Rev. Math. Phys. Special Issue (1992) 113-157.

    [4] G. Bo¨hm, K. Szlachanyi: “A coassociative C*-quantum group with non-integral dimensions”, preprint Budapest 1996, q-alg 9509008, to appear in Lett. Math. Phys.

    [5] F. Nill, K. Szlachanyi, H.-W. Wiesbrock: “Weak Hopf algebras and reducible Jones inclusions of depth 2”, preprint in preparation, Berlin 1996; F. Nill: unpublished manuscript (1996).

    [6] T. Yamanouchi: “Duality for generalized Kac algebras and a characterization of finite groupoid algebras”, Journ. Alg. 163 (1994) 9-50; T. Hayashi: “Compact quantum groups of face type”, Publ. RIMS 32 (1996) 351-369.

    [7] V.G. Drinfel'd: “Quantum groups”, in: Proceedings of the Intern. Congr. of Mathematicians, Berkeley 1986, ed. A. Gleason, pp. 798-820 (Berkeley, 1987).

    [8] V. Schomerus: “Construction of field algebras with quantum symmetry from local observables”, Commun. Math. Phys. 169 (1995) 193-236.

    [9] A. Ocneanu: “Quantized groups, string algebras, and Galois theory for algebras”, in: Operator Algebras and Applications, Vol. 2, eds. D.E. Evans et al., London Math. Soc. Lect. Notes 135, pp. 119-172 (Cambridge, 1988).

    [10] R. Longo: “Index of subfactors and statistics of quantum fields. I+II”, Commun. Math. Phys. 126 (1989) 217-247 and 130 (1990) 285-309.

  • Metrics
Share - Bookmark