publication . Preprint . 2016

On the abelianity of the stochastic sandpile model

Nunzi, François;
Open Access English
  • Published: 19 Jul 2016
Abstract
Comment: 14 pages, 3 figures
Subjects
free text keywords: Mathematics - Combinatorics, 05C21, 05C57, 05C81
Download from

[1] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality. Phys. Rev. A (3), 38(1):364-374, 1988.

[2] Anders Björner, László Lovász, and Peter W. Shor. Chip-firing games on graphs. European J. Combin., 12(4):283-291, 1991.

[3] Yao-ban Chan, Jean-François Marckert, and Thomas Selig. A natural stochastic extension of the sandpile model on a graph. J. Combin. Theory Ser. A, 120(7):1913-1928, 2013.

[4] Deepak Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64(14):1613-1616, 1990. [OpenAIRE]

[5] Deepak Dhar. Some results and a conjecture for manna's stochastic sandpile model. Physica A: Statistical Mechanics and its Applications, 270(1):69-81, 1999. [OpenAIRE]

[6] P. Diaconis and W. Fulton. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino, 49(1):95-119 (1993), 1991. Commutative algebra and algebraic geometry, II (Italian) (Turin, 1990).

[7] Erel Milshtein, Ofer Biham, and Sorin Solomon. Universality classes in isotropic, abelian, and non-abelian sandpile models. Phys. Rev. E, 58:303- 310, Jul 1998. [OpenAIRE]

[8] Frank Redig. Mathematical aspects of the abelian sandpile model. In Mathematical statistical physics, pages 657-729. Elsevier B. V., Amsterdam, 2006.

[9] Thomas Selig. Convergence de cartes et tas de sable, 2014. http://www.labri.fr/perso/selig/TheseSelig.pdf.

[10] J. Spencer. Balancing vectors in the max norm. Combinatorica, 6(1):55-65, 1986.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue