Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions

Preprint English OPEN
O'Connell, Ross C.; Loinaz, Will;
(2004)
  • Subject: Quantum Physics
    arxiv: Mathematics::Metric Geometry | Computer Science::Information Theory

The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distrib... View more
  • References (32)
    32 references, page 1 of 4

    [1] Aronstein, D. L. (2000). Analytical investigation of revival phenomena in the finite square-well potential. Physical Review A, 62:022102.

    [2] Aronstein, D. L. and Stroud, C. R. J. (1997). Fractional wave-function revivals in the infinite square well. Physical Review A, 55(6):4526-4537.

    [3] Averbukh, I. S. and Perelman, N. (1989). Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Physics Letters A, 139(9):449-453.

    [4] Averbukh, I. S. and Perelman, N. (1991). The dynamics of wave packets of highly-excited states of atoms and molecules. Sov. Phys. Usp., 34(7):572-591.

    [5] Berry, M. V. and Bodenschatz, E. (1999). Caustics, multiply reconstructed by talbot interference. Journal of Modern Optics, 46(2):349-365.

    [6] Berry, M. V. and Klein, S. (1996). Integer, fractional, and fractal talbot effects. Journal of Modern Optics, 43(10):2139- 2164.

    [7] Bluhm, R., Kostelecky, V. A., and Porter, J. A. (1996). The evolution and revival structure of quantum wave packets. American Journal of Physics, 64:944.

    [8] Chen, X. and Yeazell, J. A. (1998). Analytical wave-packet design scheme: Control of dynamics and creation of exotic wave packets. Physical Review A, 57(4):R2274-R2277.

    [9] Choi, S., Burnett, K., Friesch, O. M., Kneer, B., and Schleich, W. (2001). Spatiotemporal interferometry for trapped atomic bose-einstein condensates. Physical Review A, 63:065601. cond-mat/0011468.

    [10] Cooper, F., Khare, A., and Sukhatme, U. (2001). Supersymmetry in Quantum Mechanics. World Scientific Publishing Co.

  • Metrics
Share - Bookmark