publication . Article . Preprint . 2017

Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

Milton, Graeme W.;
Open Access
  • Published: 22 Apr 2017 Journal: Physical Review B, volume 96 (issn: 2469-9950, eissn: 2469-9969, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
Here we obtain explicit formulae for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the aco...
Subjects
free text keywords: Theoretical physics, Scattering, Physics, Condensed matter physics, Lossy compression, Mathematical Physics
Funded by
NSF| Metamaterials and Inverse Problems
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1211359
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
61 references, page 1 of 5

[1] J.-L. Auriault, Acoustics of heterogeneous media: Macroscopic behavior by homogenization, Current Topics in Acoustics Research, 1 (1994), pp. 63-90.

[2] J.-L. Auriault and G. Bonnet, Dynamique des composites elastiques periodiques, Archives of Mechanics = Archiwum Mechaniki Stosowanej, 37 (1985), pp. 269-284.

[3] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM Journal on Applied Mathematics, 47 (1987), pp. 1216-1228, doi:http://dx.doi.org/10.1137/0147082.

[4] D. J. Bergman, The dielectric constant of a composite material - A problem in classical physics, Physics Reports, 43 (1978), pp. 377-407, doi:http://dx.doi.org/10.1016/0370-1573(78)90009-1, http://www. sciencedirect.com/science/article/pii/0370157378900091.

[5] D. J. Bergman, Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material, Physical Review Letters, 44 (1980), pp. 1285- 1287, doi:http://dx.doi.org/10.1103/PhysRevLett.44.1285, http://journals.aps.org/prl/abstract/10. 1103/PhysRevLett.44.1285. [OpenAIRE]

[6] D. J. Bergman, Rigorous bounds for the complex dielectric constant of a two-component composite, Annals of Physics, 138 (1982), pp. 78-114, doi:http://dx.doi.org/10.1016/0003-4916(82)90176-2.

[7] D. J. Bergman and D. Stroud, Theory of resonances in the electromagnetic scattering by macroscopic bodies, Physical Review B: Condensed Matter and Materials Physics, 22 (1980), pp. 3527- 3593, doi:http://dx.doi.org/10.1103/PhysRevB.22.3527, http://journals.aps.org/prb/abstract/10.1103/ PhysRevB.22.3527. [OpenAIRE]

[8] T. Bückmann, M. Kadic, R. Schittny, and M. Wegener, Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material, Physica Status Solidi. B, Basic Solid State Physics, 252 (2015), pp. 1671-1674, doi:http://dx.doi.org/10.1002/pssb.201451698, http: //onlinelibrary.wiley.com/doi/10.1002/pssb.201451698/abstract. [OpenAIRE]

[9] Y. Capdeboscq and H. Kang, Improved Hashin-Shtrikman bounds for elastic moment tensors and an application, Applied Mathematics and Optimization, 57 (2008), pp. 263-288, doi:http://dx.doi.org/10.1007/s00245- 007-9022-9, http://link.springer.com/article/10.1007/s00245-007-9022-9.

[10] A. Carini and O. Mattei, Variational formulations for the linear viscoelastic problem in the time domain, European Journal of Mechanics, A, Solids, 54 (2015), pp. 146-159, doi:http://dx.doi.org/10.1016/j.euromechsol.2015.05.007, http://www.sciencedirect.com/science/ article/pii/S0997753815000510. [OpenAIRE]

[11] M. Cassier and G. W. Milton, Bounds on herglotz functions and fundamental limits of broadband passive quasi-static cloaking, available online on Arxiv at https://arxiv.org/abs/1610.08592, (2017), https://arxiv. org/abs/1610.08592.

[12] A. V. Cherkaev and L. V. Gibiansky, Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli, Journal of Mathematical Physics, 35 (1994), pp. 127-145, doi:http://dx.doi.org/10.1063/1.530782, http://jmp.aip.org/resource/1/jmapaq/v35/i1/p127_s1.

[13] G. Dassios and R. Kleinman, Low Frequency Scattering, Oxford Mathematical Monographs, Oxford University Press, Oxford, UK, 2000.

[14] A. Farhi and D. J. Bergman, Electromagnetic eigenstates and the field of an oscillating point electric dipole in a flat-slab composite structure, Physical Review A (Atomic, Molecular, and Optical Physics), 93 (2016), p. 063844, doi:http://dx.doi.org/10.1103/PhysRevA.93.063844, http://journals.aps.org/pra/ abstract/10.1103/PhysRevA.93.063844. [OpenAIRE]

[15] G. A. Francfort, F. Murat, and L. Tartar, Fourth order moments of non-negative measures on S2 and applications, Archive for Rational Mechanics and Analysis, 131 (1995), pp. 305-333, doi:http://dx.doi.org/10.1007/BF00380913, http://link.springer.com/article/10.1007/BF00380913.

61 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue