Deep Predictive Models in Interactive Music

Preprint English OPEN
Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim;
(2018)
  • Subject: Computer Science - Sound | Electrical Engineering and Systems Science - Audio and Speech Processing | Computer Science - Artificial Intelligence | Computer Science - Human-Computer Interaction | Computer Science - Neural and Evolutionary Computing

Musical performance requires prediction to operate instruments, to perform in groups and to improvise. In this paper, we investigate how a number of digital musical instruments (DMIs), including two of our own, have applied predictive machine learning models that assist... View more
  • References (53)
    53 references, page 1 of 6

    [1] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175-185, 1992. doi:10.1080/00031305.1992.10475879.

    [2] C. Ames. Automated composition in retrospect: 1956-1986. Leonardo, 20(2):169-185, 1987. doi:10.2307/1578334.

    [3] C. Ames. The Markov process as a compositional model: A survey and tutorial. Leonardo, 22(2):175-187, 1989. doi:10.2307/1575226.

    [4] J. A. Biles. Improvizing with genetic algorithms: Genjam. In E. R. Miranda and J. A. Biles, editors, Evolutionary Computer Music, pages 137-169. Springer London, London, 2007. doi:10.1007/978-1-84628- 600-1_7.

    [5] S.-J. Blakemore, D. M. Wolpert, and C. D. Frith. Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7):635-640, 1998. doi:10.1038/2870.

    [6] A. R. Brown and T. Gifford. Prediction and proactivity in real-time interactive music systems. Int. Workshop on Musical Metacreation, pages 35-39, 2013. URL: http://eprints.qut.edu.au/64500/.

    [7] J.-P. Cáceres, R. Hamilton, D. Iyer, C. Chafe, and G. Wang. To the edge with China: Explorations in network performance. In ARTECH 2008: Proc. 4th Int. Conf. Digital Arts, pages 61-66, 2008.

    [8] B. Caramiaux, N. Montecchio, A. Tanaka, and F. Bevilacqua. Adaptive gesture recognition with variation estimation for interactive systems. ACM Transactions on Interactive Intelligent Systems, 4(4):18:1-18:34, 2014. doi:10.1145/2643204.

    [9] B. Caramiaux and A. Tanaka. Machine learning of musical gestures. In Proceedings of the International Conference on New Interfaces for Musical Expression, NIME '13, pages 513-518, 2013. URL: http://nime. org/proceedings/2013/nime2013_84.pdf.

    [10] K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka. Forecasting the behavior of multivariate time series using neural networks. Neural networks, 5(6):961-970, 1992.

  • Metrics
Share - Bookmark