74 references, page 1 of 8 R∗λ(x1, . . . , xn+1; a, b; q, t; p) = X cλμ(xn+1; a, b; q, t, tn; p)R∗μ(x1, . . . , xn; a, b; q, t; p), (1.4.3) μ

[1] Askey, R. and Wilson J. 1985. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs Amer. Math. Soc., 54.

[2] Bazhanov, V. V., Kels A. P. and Sergeev S. M. 2013. Comment on star-star relations in statistical mechanics and elliptic gamma function identities. J. Phys. A, 46, 152001.

[3] Bazhanov, V. V. and Sergeev, S. M. 2012. A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations, Adv. Theor. Math. Phys., 16 65-95.

[4] Bazhanov, V. V. and Sergeev, S. M. 2012. Elliptic gamma-function and multi-spin solutions of the Yang-Baxter equation. Nucl. Phys. B, 856, 475-496.

[5] Bhatnagar, G. 1999. Dn basic hypergeometric series. Ramanujan J., 3, 175-203.

[6] Bhatnagar, G. and Schlosser, M. 1998. Cn and Dn very-well-poised 10φ9 transformations. Constr. Approx., 14, 531-567.

[7] Bhatnagar, G. and Schlosser, M. 2017. Elliptic well-poised Bailey transforms and lemmas on root system. arXiv:1704.00020.

[8] van de Bult, F. J. 2009. An elliptic hypergeometric beta integral transformation. arXiv:0912.3812.

[9] van de Bult, F. J. 2011. Two multivariate quadratic transformations of elliptic hypergeometric integrals. arXiv:1109.1123.